Where to Start
Lancaster, C. R. 2004. Structural biology: Ion pump in the movies. Nature 432:286–
Unwin, N. 2003. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555:91–
Abramson, J., Smirnova, I., Kasho, V., Verner, G., Iwata, S., and Kaback, H. R. 2003. The lactose permease of Escherichia coli: Overall structure, the sugar-
Lienhard, G. E., Slot, J. W., James, D. E., and Mueckler, M. M. 1992. How cells absorb glucose. Sci. Am. 266(1):86–
King, L. S., Kozono, D., and Agre, P. 2004. From structure to disease: The evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5:687–
Neher, E., and Sakmann, B. 1992. The patch clamp technique. Sci. Am. 266(3):28–
Sakmann, B. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science 256:503–
Ashcroft, F. M. 2000. Ion Channels and Disease. Academic Press.
Conn, P. M. (Ed.). 1998. Ion Channels, vol. 293, Methods in Enzymology. Academic Press.
Aidley, D. J., and Stanfield, P. R. 1996. Ion Channels: Molecules in Action. Cambridge University Press.
Hille, B. 2001. Ionic Channels of Excitable Membranes (3d ed.). Sinauer.
Läuger, P. 1991. Electrogenic Ion Pumps. Sinauer.
Stein, W. D. 1990. Channels, Carriers, and Pumps: An Introduction to Membrane Transport. Academic Press.
Hodgkin, A. 1992. Chance and Design: Reminiscences of Science in Peace and War. Cambridge University Press.
Sorensen, T. L., Moller, J. V., and Nissen, P. 2004. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–
Sweadner, K. J., and Donnet, C. 2001. Structural similarities of Na, K-
Toyoshima, C., and Mizutani, T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–
Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–
Auer, M., Scarborough, G. A., and Kuhlbrandt, W. 1998. Three-
Axelsen, K. B., and Palmgren, M. G. 1998. Evolution of substrate specificities in the P-
Pedersen, P. A., Jorgensen, J. R., and Jorgensen, P. L. 2000. Importance of conserved α-subunit segment 709GDGVND for Mg2+ binding, phosphorylation, energy transduction in Na, K-
Blanco, G., and Mercer, R. W. 1998. Isozymes of the Na-
Estes, J. W., and White, P. D. 1965. William Withering and the purple foxglove. Sci. Am. 212(6):110–
Locher, K. P. 2009. Structure and mechanism of ATP-
Rees, D. C., Johnson, E., and Lewinson, O. 2009. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 10:218–
Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. 2007. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. U.S.A. 104:19005–
Locher, K. P., Lee, A. T., and Rees, D. C. 2002. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296:1091–
Borths, E. L., Locher, K. P., Lee, A. T., and Rees, D. C. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. U.S.A. 99:16642–
Dong, J., Yang, G., and McHaourab, H. S. 2005. Structural basis of energy transduction in the transport cycle of MsbA. Science 308:1023–
Akabas, M. H. 2000. Cystic fibrosis transmembrane conductance regulator: Structure and function of an epithelial chloride channel. J. Biol. Chem. 275:3729–
Chen, J., Sharma, S., Quiocho, F. A., and Davidson, A. L. 2001. Trapping the transition state of an ATP-
Sheppard, D. N., and Welsh, M. J. 1999. Structure and function of the CFTR chloride channel. Physiol. Rev. 79:S23–
Chen, Y., and Simon, S. M. 2000. In situ biochemical demonstration that P-
Saier, M. H., Jr., Paulsen, I. T., Sliwinski, M. K., Pao, S. S., Skurray, R. A., and Nikaido, H. 1998. Evolutionary origins of multidrug and drug-
Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–
Philipson, K. D., and Nicoll, D. A. 2000. Sodium-
Pao, S. S., Paulsen, I. T., and Saier, M. H., Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1–
Wright, E. M., Hirsch, J. R., Loo, D. D., and Zampighi, G. A. 1997. Regulation of Na+/glucose cotransporters. J. Exp. Biol. 200:287–
Kaback, H. R., Bibi, E., and Roepe, P. D. 1990. β-Galactoside transport in E. coli: A functional dissection of lac permease. Trends Biochem. Sci. 8:309–
Hilgemann, D. W., Nicoll, D. A., and Philipson, K. D. 1991. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352:715–
Hediger, M. A., Turk, E., and Wright, E. M. 1989. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc. Natl. Acad. Sci. U.S.A. 86: 5748–
B13
Zhou, Y., and MacKinnon, R. 2003. The occupancy of ions in the K1 selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965–
Zhou, Y., Morais-
Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. 2002. The open pore conformation of potassium channels. Nature 417:523–
Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., and MacKinnon, R. 2003. X-
Jiang, Y., Ruta, V., Chen, J., Lee, A., and MacKinnon, R. 2003. The principle of gating charge movement in a voltage-
Mackinnon, R. 2004. Structural biology: Voltage sensor meets lipid membrane. Science 306:1304–
Noskov, S. Y., Bernèche, S., and Roux, B. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–
Bezanilla, F. 2000. The voltage sensor in voltage-
Shieh, C.-C., Coghlan, M., Sullivan, J. P., and Gopalakrishnan, M. 2000. Potassium channels: Molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev. 52:557–
Horn, R. 2000. Conversation between voltage sensors and gates of ion channels. Biochemistry 39:15653–
Perozo, E., Cortes, D. M., and Cuello, L. G. 1999. Structural rearrangements underlying K+-channel activation gating. Science 285:73–
Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–
Marban, E., Yamagishi, T., and Tomaselli, G. F. 1998. Structure and function of the voltage-
Miller, R. J. 1992. Voltage-
Catterall, W. A. 1991. Excitation-
Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967–
Miyazawa, A., Fujiyoshi, Y., Stowell, M., and Unwin, N. 1999. Nicotinic acetylcholine receptor at 4.6 Å resolution: Transverse tunnels in the channel wall. J. Mol. Biol. 288:765–
Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. 2002. Crystal structure and mechanism of a calcium-
Barrantes, F. J., Antollini, S. S., Blanton, M. P., and Prieto, M. 2000. Topography of the nicotinic acetylcholine receptor membrane-
Cordero-
Le Novère, N., and Changeux, J. P. 1995. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. J. Mol. Evol. 40:155–
Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., and Morikawa, K. 2000. Structural basis of glutamate recognition by dimeric metabotropic glutamate receptor. Nature 407:971–
Betz, H., Kuhse, J., Schmieden, V., Laube, B., Kirsch, J., and Harvey, R. J. 1999. Structure and functions of inhibitory and excitatory glycine receptors. Ann. N. Y. Acad. Sci. 868:667–
Unwin, N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–
Colquhoun, D., and Sakmann, B. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294:464–
Saenen, J. B., and Vrints, C. J. 2008. Molecular aspects of the congenital and acquired Long QT Syndrome: Clinical implications. J. Mol. Cell. Cardiol. 44:633–
Zarȩba, W. 2007. Drug induced QT prolongation. Cardiol. J. 14:523–
Fernandez, D., Ghanta, A., Kauffman, G. W., and Sanguinetti, M. C. 2004. Physicochemical features of the hERG channel drug binding site. J. Biol. Chem. 279:10120–
Mitcheson, J. S., Chen, J., Lin, M., Culberson, C., and Sanguinetti, M. C. 2000. A structural basis for drug-
Maeda, S., Nakagawa, S., Suga, M., Yamashita, E., Oshima, A., Fujiyoshi, Y., and Tsukihara, T. 2009. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458:597–
Saez, J. C., Berthoud, V. M., Branes, M. C., Martinez, A. D., and Beyer, E. C. 2003. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol. Rev. 83:1359–
Revilla, A., Bennett, M. V. L., and Barrio, L. C. 2000. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc. Natl. Acad. Sci. U.S.A. 97:14760–
Unger, V. M., Kumar, N. M., Gilula, N. B., and Yeager, M. 1999. Three-
Simon, A. M. 1999. Gap junctions: More roles and new structural data. Trends Cell Biol. 9:169–
Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T., and Mammano, F. 2005. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat. Cell Biol. 7:63–
White, T. W., and Paul, D. L. 1999. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61:283–
Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., and Nielsen, S. 2002. Aquaporin water channels: From atomic structure to clinical medicine. J. Physiol. 542:3–
Agre, P., and Kozono, D. 2003. Aquaporin water channels: Molecular mechanisms for human diseases. FEBS Lett. 555:72–
de Groot, B. L., Engel, A., and Grubmuller, H. 2003. The structure of the aquaporin-