Chapter 13

Where to Start

Lancaster, C. R. 2004. Structural biology: Ion pump in the movies. Nature 432:286–287.

Unwin, N. 2003. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555:91–95.

Abramson, J., Smirnova, I., Kasho, V., Verner, G., Iwata, S., and Kaback, H. R. 2003. The lactose permease of Escherichia coli: Overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett. 555:96–101.

Lienhard, G. E., Slot, J. W., James, D. E., and Mueckler, M. M. 1992. How cells absorb glucose. Sci. Am. 266(1):86–91.

King, L. S., Kozono, D., and Agre, P. 2004. From structure to disease: The evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5:687–698.

Neher, E., and Sakmann, B. 1992. The patch clamp technique. Sci. Am. 266(3):28–35.

Sakmann, B. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels. Science 256:503–512.

Books

Ashcroft, F. M. 2000. Ion Channels and Disease. Academic Press.

Conn, P. M. (Ed.). 1998. Ion Channels, vol. 293, Methods in Enzymology. Academic Press.

Aidley, D. J., and Stanfield, P. R. 1996. Ion Channels: Molecules in Action. Cambridge University Press.

Hille, B. 2001. Ionic Channels of Excitable Membranes (3d ed.). Sinauer.

Läuger, P. 1991. Electrogenic Ion Pumps. Sinauer.

Stein, W. D. 1990. Channels, Carriers, and Pumps: An Introduction to Membrane Transport. Academic Press.

Hodgkin, A. 1992. Chance and Design: Reminiscences of Science in Peace and War. Cambridge University Press.

P-Type ATPases

Sorensen, T. L., Moller, J. V., and Nissen, P. 2004. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675.

Sweadner, K. J., and Donnet, C. 2001. Structural similarities of Na, K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem. J. 356:685–704.

Toyoshima, C., and Mizutani, T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535.

Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655.

Auer, M., Scarborough, G. A., and Kuhlbrandt, W. 1998. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392:840–843.

Axelsen, K. B., and Palmgren, M. G. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46:84–101.

Pedersen, P. A., Jorgensen, J. R., and Jorgensen, P. L. 2000. Importance of conserved α-subunit segment 709GDGVND for Mg2+ binding, phosphorylation, energy transduction in Na, K-ATPase. J. Biol. Chem. 275:37588–37595.

Blanco, G., and Mercer, R. W. 1998. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol. 275:F633–F650.

Estes, J. W., and White, P. D. 1965. William Withering and the purple foxglove. Sci. Am. 212(6):110–117.

ATP-Binding Cassette Proteins

Locher, K. P. 2009. Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. B 364:239–245.

Rees, D. C., Johnson, E., and Lewinson, O. 2009. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 10:218–227.

Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. 2007. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. U.S.A. 104:19005–19010.

Locher, K. P., Lee, A. T., and Rees, D. C. 2002. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science 296:1091–1098.

Borths, E. L., Locher, K. P., Lee, A. T., and Rees, D. C. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. U.S.A. 99:16642–16647.

Dong, J., Yang, G., and McHaourab, H. S. 2005. Structural basis of energy transduction in the transport cycle of MsbA. Science 308:1023–1028.

Akabas, M. H. 2000. Cystic fibrosis transmembrane conductance regulator: Structure and function of an epithelial chloride channel. J. Biol. Chem. 275:3729–3732.

Chen, J., Sharma, S., Quiocho, F. A., and Davidson, A. L. 2001. Trapping the transition state of an ATP-binding cassette transporter: Evidence for a concerted mechanism of maltose transport. Proc. Natl. Acad. Sci. U.S.A. 98:1525–1530.

Sheppard, D. N., and Welsh, M. J. 1999. Structure and function of the CFTR chloride channel. Physiol. Rev. 79:S23–S45.

Chen, Y., and Simon, S. M. 2000. In situ biochemical demonstration that P-glycoprotein is a drug efflux pump with broad specificity. J. Cell Biol. 148:863–870.

Saier, M. H., Jr., Paulsen, I. T., Sliwinski, M. K., Pao, S. S., Skurray, R. A., and Nikaido, H. 1998. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12:265–274.

Symporters and Antiporters

Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615.

Philipson, K. D., and Nicoll, D. A. 2000. Sodium-calcium exchange: A molecular perspective. Annu. Rev. Physiol. 62:111–133.

Pao, S. S., Paulsen, I. T., and Saier, M. H., Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1–34.

Wright, E. M., Hirsch, J. R., Loo, D. D., and Zampighi, G. A. 1997. Regulation of Na+/glucose cotransporters. J. Exp. Biol. 200:287–293.

Kaback, H. R., Bibi, E., and Roepe, P. D. 1990. β-Galactoside transport in E. coli: A functional dissection of lac permease. Trends Biochem. Sci. 8:309–314.

Hilgemann, D. W., Nicoll, D. A., and Philipson, K. D. 1991. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352:715–718.

Hediger, M. A., Turk, E., and Wright, E. M. 1989. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc. Natl. Acad. Sci. U.S.A. 86: 5748–5752.

B13

Ion Channels

Zhou, Y., and MacKinnon, R. 2003. The occupancy of ions in the K1 selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965–975.

Zhou, Y., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48.

Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. 2002. The open pore conformation of potassium channels. Nature 417:523–526.

Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., and MacKinnon, R. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41.

Jiang, Y., Ruta, V., Chen, J., Lee, A., and MacKinnon, R. 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48.

Mackinnon, R. 2004. Structural biology: Voltage sensor meets lipid membrane. Science 306:1304–1305.

Noskov, S. Y., Bernèche, S., and Roux, B. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555–592.

Shieh, C.-C., Coghlan, M., Sullivan, J. P., and Gopalakrishnan, M. 2000. Potassium channels: Molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev. 52:557–594.

Horn, R. 2000. Conversation between voltage sensors and gates of ion channels. Biochemistry 39:15653–15658.

Perozo, E., Cortes, D. M., and Cuello, L. G. 1999. Structural rearrangements underlying K+-channel activation gating. Science 285:73–78.

Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

Marban, E., Yamagishi, T., and Tomaselli, G. F. 1998. Structure and function of the voltage-gated Na+ channel. J. Physiol. 508: 647–657.

Miller, R. J. 1992. Voltage-sensitive Ca2+ channels. J. Biol. Chem. 267: 1403–1406.

Catterall, W. A. 1991. Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels. Cell 64:871–874.

Ligand-Gated Ion Channels

Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967–989.

Miyazawa, A., Fujiyoshi, Y., Stowell, M., and Unwin, N. 1999. Nicotinic acetylcholine receptor at 4.6 Å resolution: Transverse tunnels in the channel wall. J. Mol. Biol. 288:765–786.

Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

Barrantes, F. J., Antollini, S. S., Blanton, M. P., and Prieto, M. 2000. Topography of the nicotinic acetylcholine receptor membrane-embedded domains. J. Biol. Chem. 275:37333–37339.

Cordero-Erausquin, M., Marubio, L. M., Klink, R., and Changeux, J. P. 2000. Nicotinic receptor function: New perspectives from knockout mice. Trends Pharmacol. Sci. 21:211–217.

Le Novère, N., and Changeux, J. P. 1995. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. J. Mol. Evol. 40:155–172.

Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., and Morikawa, K. 2000. Structural basis of glutamate recognition by dimeric metabotropic glutamate receptor. Nature 407:971–978.

Betz, H., Kuhse, J., Schmieden, V., Laube, B., Kirsch, J., and Harvey, R. J. 1999. Structure and functions of inhibitory and excitatory glycine receptors. Ann. N. Y. Acad. Sci. 868:667–676.

Unwin, N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–43.

Colquhoun, D., and Sakmann, B. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294:464–466.

Long QT Syndrome and hERG

Saenen, J. B., and Vrints, C. J. 2008. Molecular aspects of the congenital and acquired Long QT Syndrome: Clinical implications. J. Mol. Cell. Cardiol. 44:633–646.

Zarȩba, W. 2007. Drug induced QT prolongation. Cardiol. J. 14:523–533.

Fernandez, D., Ghanta, A., Kauffman, G. W., and Sanguinetti, M. C. 2004. Physicochemical features of the hERG channel drug binding site. J. Biol. Chem. 279:10120–10127.

Mitcheson, J. S., Chen, J., Lin, M., Culberson, C., and Sanguinetti, M. C. 2000. A structural basis for drug-induced long QT syndrome. Proc. Natl. Acad. Sci. U.S.A. 97:12329–12333.

Gap Junctions

Maeda, S., Nakagawa, S., Suga, M., Yamashita, E., Oshima, A., Fujiyoshi, Y., and Tsukihara, T. 2009. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458:597–604.

Saez, J. C., Berthoud, V. M., Branes, M. C., Martinez, A. D., and Beyer, E. C. 2003. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol. Rev. 83:1359–1400.

Revilla, A., Bennett, M. V. L., and Barrio, L. C. 2000. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc. Natl. Acad. Sci. U.S.A. 97:14760–14765.

Unger, V. M., Kumar, N. M., Gilula, N. B., and Yeager, M. 1999. Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180.

Simon, A. M. 1999. Gap junctions: More roles and new structural data. Trends Cell Biol. 9:169–170.

Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T., and Mammano, F. 2005. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat. Cell Biol. 7:63–69.

White, T. W., and Paul, D. L. 1999. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61:283–310.

Water Channels

Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., and Nielsen, S. 2002. Aquaporin water channels: From atomic structure to clinical medicine. J. Physiol. 542:3–16.

Agre, P., and Kozono, D. 2003. Aquaporin water channels: Molecular mechanisms for human diseases. FEBS Lett. 555:72–78.

de Groot, B. L., Engel, A., and Grubmuller, H. 2003. The structure of the aquaporin-1 water channel: A comparison between cryo-electron microscopy and X-ray crystallography. J. Mol. Biol. 325:485–493.