Chapter 16

Where to Start

McCracken, A. N., and Edinger, A. L. 2013. Nutrient transporters: The Achilles’ heel of anabolism. Trends Endocrin. Met. 24:200–208.

Curry, A. 2013. The milk revolution. Nature 500:20–22.

Bar-Even, A., Flamholz, A., Noor, E., and Milo, R. 2012. Rethinking glycolysis: On the biochemical logic of metabolic pathways. Nature Chem. Biol. 8:509–517.

Ward, P. S., and Thompson, C. B. 2012. Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308.

Herling, A., König, M., Bulik, S., and Holzhütter, H.-G. 2011. Enzymatic features of the glucose metabolism in tumor cells. FEBS J. 278:2436–2459.

Lin, H. V., and Accili, D. 2011. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14:9–19.

Hirabayashi, J. 1996. On the origin of elementary hexoses. Quart. Rev. Biol.71:365–380.

Books and Reviews

Tong, L. 2013. Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci. 70:863–891.

Frayn, K. N. 2010. Metabolic Regulation: A Human Perspective (3d ed.). Wiley-Blackwell.

Fell, D. 1997. Understanding the Control of Metabolism. Portland.

Fersht, A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Freeman and Company.

Poortmans, J. R. (Ed.). 2004. Principles of Exercise Biochemistry. Krager.

Structure of Glycolytic and Gluconeogenic Enzymes

Lietzan, A. D., and St. Maurice, M. 2013. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase. J. Biol. Chem. 288:19915−19925.

Banaszak, L., Mechin, I., Obmolova, G., Oldham, M., Chang, S. H., Ruiz, T., Radermacher, M., Kopperschläger, G., and Rypniewski, W. 2011. The crystal structures of eukaryotic phosphofructokinases from baker’s yeast and rabbit skeletal muscle. J. Mol. Biol. 407:284–297.

Lasso, G., Yu, L. P. C., Gil, D., Xiang, S., Tong, L., and Valle, M. 2010. Cryo-EM analysis reveals new insights into the mechanism of action of pyruvate carboxylase. Structure 18:1300–1310.

Ferreras, C., Hernández, E. D., Martínez-Costa, O. H., and Aragón, J. J. 2009. Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase. J. Biol. Chem. 284:9124–9131.

Hines, J. K., Chen, X., Nix, J. C., Fromm, H. J., and Honzatko. R. B. 2007. Structures of mammalian and bacterial fructose-1, 6-bisphosphatase reveal the basis for synergism in AMP/fructose-2, 6-bisphosphate inhibition. J. Biol. Chem. 282:36121–36131.

Ferreira-da-Silva, F., Pereira, P. J., Gales, L., Roessle, M., Svergun, D. I., Moradas-Ferreira, P., and Damas, A. M. 2006. The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures. J. Biol. Chem. 281:33433–33440.

Kim, S.-G., Manes, N. P., El-Maghrabi, M. R., and Lee, Y.-H. 2006. Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-phosphatase (PFKFB3): A possible target for cancer therapy. J. Biol. Chem. 281:2939–2944.

Aleshin, A. E., Kirby, C., Liu, X., Bourenkov, G. P., Bartunik, H. D., Fromm, H. J., and Honzatko, R. B. 2000. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol. 296:1001–1015.

Jeffery, C. J., Bahnson, B. J., Chien, W., Ringe, D., and Petsko, G. A. 2000. Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator. Biochemistry 39:955–964.

Bernstein, B. E., and Hol, W. G. 1998. Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism. Biochemistry 37:4429–4436.

Rigden, D. J., Alexeev, D., Phillips, S. E. V., and Fothergill-Gilmore, L. A. 1998. The 2.3 Å X-ray crystal structure of S. cerevisiae phosphoglycerate mutase. J. Mol. Biol. 276:449–459.

Zhang, E., Brewer, J. M., Minor, W., Carreira, L. A., and Lebioda, L. 1997. Mechanism of enolase: The crystal structure of asymmetric dimer enolase-2-phospho-d-glycerate/enolase-phosphoenolpyruvate at 2.0 Å resolution. Biochemistry 36:12526–12534.

Hasemann, C. A., Istvan E. S., Uyeda, K., and Deisenhofer, J. 1996. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase reveals distinct domain homologies. Structure 4:1017–1029.

Tari, L. W., Matte, A., Pugazhenthi, U., Goldie, H., and Delbaere, L. T. J. 1996. Snapshot of an enzyme reaction intermediate in the structure of the ATP-Mg2+-oxalate ternary complex of Escherichia coli PEP carboxykinase. Nat. Struct. Biol. 3:355–363.

Catalytic Mechanisms

Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., and Branlant, G. 1989. Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis. Biochemistry 28:2586–2592.

Bash, P. A., Field, M. J., Davenport, R. C., Petsko, G. A., Ringe, D., and Karplus, M. 1991. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 30:5826–5832.

Knowles, J. R., and Albery, W. J. 1977. Perfection in enzyme catalysis: The energetics of triosephosphate isomerase. Acc. Chem. Res. 10: 105–111.

Regulation

Liu, S., Ammirati, M. J., Song, X., Knafels, J. D., Zhang, J., Greasley, S. E., Pfefferkorn, J. A., and Qiu, X. 2012. Insights into mechanism of glucokinase activation: Observation of multiple distinct protein conformations. J. Biol. Chem. 287:13598–13610.

Brüser, A., Kirchberger, J., Kloos, M., Sträter, N., and Schöneberg, T. 2012. Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. J. Biol. Chem. 287: 17546–17553.

B17

Anderka, O., Boyken, J., Aschenbach, U., Batzer, A., Boscheinen, O., and Schmoll, D. 2008. Biophysical characterization of the interaction between hepatic glucokinase and its regulatory protein: Impact of physiological and pharmacological effectors. J. Biol. Chem. 283:31333–31340.

Iancu, C. V., Mukund, S., Fromm, H. J., and Honzatko, R. B. 2005. R-state AMP complex reveals initial steps of the quaternary transition of fructose-l,6-bisphosphatase. J. Biol. Chem. 280: 19737–19745.

Lee, Y. H., Li, Y., Uyeda, K., and Hasemann, C. A. 2003. Tissue-specific structure/function differentiation of the five isoforms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J. Biol. Chem. 278:523–530.

Gleeson, T. T. 1996. Post-exercise lactate metabolism: A comparative review of sites, pathways, and regulation. Annu. Rev. Physiol. 58:556–581.

Jitrapakdee, S., and Wallace, J. C. 1999. Structure, function and regulation of pyruvate carboxylase. Biochem. J. 340:1–16.

van de Werve, G., Lange, A., Newgard, C., Mechin, M. C., Li, Y., and Berteloot, A. 2000. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur. J. Biochem. 267:1533–1549.

Sugar Transporters

Blodgett, D. M., Graybill, C. and Carruthers, A. 2008. Analysis of glucose transporter topology and structural dynamics. J. Biol. Chem. 283:36416–36424.

Huang, S., and Czech, M. P. 2007. The GLUT4 glucose transporter. Cell Metab. 5:237–252.

Czech, M. P., and Corvera, S. 1999. Signaling mechanisms that regulate glucose transport. J Biol. Chem. 274:1865–1868.

Silverman, M. 1991. Structure and function of hexose transporters. Annu. Rev. Biochem. 60:757–794.

Thorens, B., Charron, M. J., and Lodish, H. F. 1990. Molecular physiology of glucose transporters. Diabetes Care 13:209–218.

Glycolysis and Cancer

Morgan, H. P., O’Reilly, F. J., Wear, M. A., O’Neill, J. R., Fothergill-Gilmore, L. A., Hupp, T., and Walkinshaw, M. D. 2013. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 110: 5881–5886.

Schulze, A., and Harris, A. L. 2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373.

Lunt, S. Y., and Vander Heiden, M. G. 2011. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64.

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029–1033.

Mathupala, S. P., Ko, Y. H., and Pedersen, P. L. 2009. Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Sem. Cancer Biol. 19:17–24.

Kroemer, G. K., and Pouyssegur, J. 2008. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell 12:472–482.

Hsu, P. P., and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134:703–707.

Genetic Diseases

Orosz, F., Oláh, J., and Ovádi, J. 2009. Triosephosphate isomerase deficiency: New insights into an enigmatic disease. Biochim. Biophys. Acta 1792:1168–1174.

Scriver, C. R., Beaudet, A. L., Valle, D., Sly, W. S., Childs, B., Kinzler, K., and Vogelstein, B. (Eds.). 2001. The Metabolic and Molecular Basis of Inherited Disease (8th ed.). McGraw-Hill.

Evolution

Dandekar, T., Schuster, S., Snel, B., Huynen, M., and Bork, P. 1999. Pathway alignment: Application to the comparative analysis of glycolytic enzymes. Biochem. J. 343:115–124.

Heinrich, R., Melendez-Hevia, E., Montero, F., Nuno, J. C., Stephani, A., and Waddell, T. G. 1999. The structural design of glycolysis: An evolutionary approach. Biochem. Soc. Trans. 27:294–298.

Walmsley, A. R., Barrett, M. P., Bringaud, F., and Gould, G. W. 1998. Sugar transporters from bacteria, parasites and mammals: Structure-activity relationships. Trends Biochem. Sci. 23: 476–480.

Maes, D., Zeelen, J. P., Thanki, N., Beaucamp, N., Alvarez, M., Thi, M. H., Backmann, J., Martial, J. A., Wyns, L., Jaenicke, R., et al. 1999. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: A comparative thermostability structural analysis of ten different TIM structures. Proteins 37:441–453.

Historical Aspects

Friedmann, H. C. 2004. From Butyribacterium to E. coli: An essay on unity in biochemistry. Perspect. Biol. Med. 47:47–66.

Fruton, J. S. 1999. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. Yale University Press.

Kalckar, H. M. (Ed.). 1969. Biological Phosphorylations: Development of Concepts. Prentice Hall.