Chapter 17

Where to Start

Sugden, M. C., and Holness, M. J. 2003. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 284:E855–E862.

Owen, O. E., Kalhan, S. C., and Hanson, R. W. 2002. The key role of anaplerosis and cataplerosis for citric acid function. J. Biol. Chem. 277:30409–30412.

Pyruvate Dehydrogenase Complex

Patel, K. P., O’Brien, T. W., Subramony, S. H., Shuster, J., and Stacpoole, P. W. 2012. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metab. 105:34–43.

Vijayakrishnan, S., Callow, P., Nutley, M. A., Mcgow, D. P., Gilbert, D., Kropholler, P., Cooper, A., Byron, O., and Lindsay, J. G. 2011. Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly. Biochem. J. 437:565–574.

Vijayakrishnan, S., Kelly, S. M., Gilbert, R. J., Callow, P., Bhella, D., Forsyth, T., Lindsay, J. G., and Byron, O. 2010. Solution structure and characterization of the human pyruvate dehydrogenase complex core assembly. J. Mol. Biol. 399:71–93.

Brautigam, C. A., Wynn, R. M., Chuang, J. L., and Chuang, D. T. 2009. Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. J. Biol. Chem. 284:13086–13098.

Hiromasa, Y., Fujisawa, T., Aso, Y., and Roche, T. E. 2004. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding proteins and their capacities to bind the E1 and E3 components. J. Biol Chem. 279:6921–6933.

Domingo, G. J., Chauhan, H. J., Lessard, I. A., Fuller, C., and Perham, R. N. 1999. Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. Eur. J. Biochem. 266:1136–1146.

B18

Structure of Citric Acid Cycle Enzymes

Fraser, M. E., Hayakawa, K., Hume, M. S., Ryan, D. G., and Brownie, E. R. 2006. Interactions of GTP with the ATP-grasp domain of GTP-specific succinyl-CoA synthetase. J. Biol. Chem. 281:11058–11065.

Yankovskaya, V., Horsefield, R., Törnroth, S., Luna-Chavez, C., Miyoshi, H., Léger, C., Byrne, B., Cecchini, G., and Iowata, S. 2003. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704.

Fraser, M. E., James, M. N., Bridger, W. A., and Wolodko, W. T. 1999. A detailed structural description of Escherichia coli succinyl-CoA synthetase. J. Mol. Biol. 285:1633–1653. [Published erratum appears in May 7, 1999, issue of J. Mol. Biol. 288(3):501.]

Lloyd, S. J., Lauble, H., Prasad, G. S., and Stout, C. D. 1999. The mechanism of aconitase: 1.8 Å resolution crystal structure of the S642A:citrate complex. Protein Sci. 8:2655–2662.

Rose, I. A. 1998. How fumarase recycles after the malate → fumarate reaction: Insights into the reaction mechanism. Biochemistry 37:17651–17658.

Organization of the Citric Acid Cycle

Lambeth, D. O., Tews, K. N., Adkins, S., Frohlich, D., and Milavetz, B. I. 2004. Expression of two succinyl-CoA specificities in mammalian tissues. J. Biol. Chem. 279:36621–36624.

Velot, C., Mixon, M. B., Teige, M., and Srere, P. A. 1997. Model of a quinary structure between Krebs TCA cycle enzymes: A model for the metabolon. Biochemistry 36:14271–14276.

Haggie, P. M., and Brindle, K. M. 1999. Mitochondrial citrate synthase is immobilized in vivo. J. Biol. Chem. 274:3941–3945.

Morgunov, I., and Srere, P. A. 1998. Interaction between citrate synthase and malate dehydrogenase: Substrate channeling of oxaloacetate. J. Biol. Chem. 273:29540–29544.

Regulation

Shi, Q., Xu, H., Yu, H., Zhang, N., Ye, Y., Estevez, A. G., Deng, H., and Gibson, G. E. 2011. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J. Biol. Chem. 286:17640–17648.

Phillips, D., Aponte, A. M., French, S. A., Chess, D. J., and Balaban, R. S. 2009. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry 48: 7140–7149.

Taylor, A. B., Hu, G., Hart, P. J., and McAlister-Henn, L. 2008. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J. Biol. Chem. 283:10872–10880.

Green, T., Grigorian, A., Klyuyeva, A., Tuganova, A., Luo, M., and Popov, K. M. 2008. Structural and functional insights into the molecular mechanisms responsible for the regulation of pyruvate dehydrogenase kinase. J. Biol. Chem. 283:15789–15798.

Hiromasa, Y., and Roche, T. E. 2003. Facilitated interaction between the pyruvate dehydrogenase kinase isoform 2 and the dihydrolipoyl acetyltransferases. J. Biol. Chem. 278:33681–33693.

Jitrapakdee, S., and Wallace, J. C. 1999. Structure, function and regulation of pyruvate carboxylase. Biochem. J. 340:1–16.

The Citric Acid Cycle and Cancer

Wang, F., Travins, J., DeLaBarre, B., Penard-Lacronique, V., Schalm, S., Hansen, E., Straley, K., Kernytsky, A., Liu, W., Gliser, C., et al. 2013. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–626.

Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., Tsoi, J., Clark, O., Oldrini, B., Komisopoulou, E., et al. 2013. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630.

Losman, J.-A., Koivunen, P., Lee, S., Schneider, R. K., McMahon, C., Cowley, G. S., Root, D. E., Ebert, B. L., Kaelin, W. G. Jr., et al. 2013. (R)-2-Hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625.

Sakai, C., Tomitsuka, T., Esumi, H., Harada, S., and Kita, K. 2012. Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim. Biophys. Acta 1820:643–651.

Xekouki P., and Stratakis, C. A. 2012. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: Could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr.-Relat. Cancer 19:C33–C40.

Thompson, C. B. 2009. Metabolic enzymes as oncogenes or tumor suppressors. New Engl. J. Med. 360:813–815.

McFate, T., Mohyeldin, A., Lu, H., Thakar, J., Henriques, J., Halim, N. D., Wu, H., Schell, M. J., Tsang, T. M., Teahan, O., Zhou, S., Califano, J. A., Jeoung, M. N., Harris, R. A., and Verma, A. 2008. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 283:22700–22708.

Gogvadze, V., Orrenius, S., and Zhivotovsky, B. 2008. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol. 18:165–173.

Evolutionary Aspects

Meléndez-Hevia, E., Waddell, T. G., and Cascante, M. 1996. The puzzle of the Krebs citric acid cycle: Assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways in evolution. J. Mol. Evol. 43:293–303.

Baldwin, J. E., and Krebs, H. 1981. The evolution of metabolic cycles. Nature 291:381–382.

Gest, H. 1987. Evolutionary roots of the citric acid cycle in prokaryotes. Biochem. Soc. Symp. 54:3–16.

Weitzman, P. D. J. 1981. Unity and diversity in some bacterial citric acid cycle enzymes. Adv. Microbiol. Physiol. 22:185–244.

Discovery of the Citric Acid Cycle

Kornberg, H. 2000. Krebs and his trinity of cycles. Nat. Rev. Mol. Cell. Biol. 1:225–228.

Krebs, H. A., and Johnson, W. A. 1937. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4:148–156.

Krebs, H. A. 1970. The history of the tricarboxylic acid cycle. Perspect. Biol. Med. 14:154–170.

Krebs, H. A., and Martin, A. 1981. Reminiscences and Reflections. Clarendon Press.