Chapter 20

Where to Start

Buchanan, B. B., and Wong, J. H. 2013. A conversation with Andrew Benson: reflections on the discovery of the Calvin–Benson cycle. Photosynth. Res. 114:207–214.

Ellis, R. J. 2010. Tackling unintelligent design. Nature 463:164–165.

Gutteridge, S., and Pierce, J. 2006. A unified theory for the basis of the limitations of the primary reaction of photosynthetic CO2 fixation: Was Dr. Pangloss right? Proc. Natl. Acad. Sci. U.S.A. 103:7203–7204.

Horecker, B. L. 1976. Unravelling the pentose phosphate pathway. In Reflections on Biochemistry (pp. 65–72), edited by A. Kornberg, L. Cornudella, B. L. Horecker, and J. Oro. Pergamon.

Levi, P. 1984. Carbon. In The Periodic Table. Random House.

Books and General Reviews

Parry, M. A. J., Andralojc, P. J., Mitchell, R. A. C., Madgwick, P. J., and Keys, A. J. 2003. Manipulation of rubisco: The amount, activity, function and regulation. J. Exp. Bot. 54:1321–1333.

Spreitzer, R. J., and Salvucci, M. E. 2002. Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol. 53:449–475.

Wood, T. 1985. The Pentose Phosphate Pathway. Academic Press.

Buchanan, B. B., Gruissem, W., and Jones, R. L. 2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists.

Enzymes and Reaction Mechanisms

Harrison, D. H., Runquist, J. A., Holub, A., and Miziorko, H. M. 1998. The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase. Biochemistry 37:5074–5085.

Miziorko, H. M. 2000. Phosphoribulokinase: Current perspectives on the structure/function basis for regulation and catalysis. Adv. Enzymol. Relat. Areas Mol. Biol. 74:95–127.

Thorell, S., Gergely, P., Jr., Banki, K., Perl, A., and Schneider, G. 2000. The three-dimensional structure of human transaldolase. FEBS Lett. 475:205–208.

Carbon Dioxide Fixation and Rubisco

Satagopan, S., Scott, S. S., Smith, T. G., and Tabita, F. R. 2009. A rubisco mutant that confers growth under a normally “inhibitory” oxygen concentration. Biochemistry 48:9076–9083.

Tcherkez, G. G. B., Farquhar, G. D., and Andrews, J. T. 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. U.S.A. 103:7246–7251.

Sugawara, H., Yamamoto, H., Shibata, N., Inoue, T., Okada, S., Miyake, C., Yokota, A., and Kai, Y. 1999. Crystal structure of carboxylase reaction-oriented ribulose 1,5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J. Biol. Chem. 274:15655–15661.

Hansen, S., Vollan, V. B., Hough, E., and Andersen, K. 1999. The crystal structure of rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J. Mol. Biol. 288:609–621.

B22

Knight, S., Andersson, I., and Branden, C. I. 1990. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution: Subunit interactions and active site. J. Mol. Biol. 215:113–160.

Taylor, T. C., and Andersson, I. 1997. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. J. Mol. Biol. 265:432–444.

Cleland, W. W., Andrews, T. J., Gutteridge, S., Hartman, F. C., and Lorimer, G. H. 1998. Mechanism of rubisco: The carbamate as general base. Chem. Rev. 98:549–561.

Buchanan, B. B. 1992. Carbon dioxide assimilation in oxygenic and anoxygenic photosynthesis. Photosynth. Res. 33:147–162.

Hatch, M. D. 1987. C4 photosynthesis: A unique blend of modified biochemistry, anatomy, and ultrastructure. Biochim. Biophys. Acta 895:81–106.

Regulation

Keown, J. R., Griffin, M. D. W., Mertens, H. D. T., and Pearce, F. G. 2013. Small oligomers of ribulose-bisphosphate carboxylase/oxygenase (rubisco) activase are required for biological activity. J. Biol. Chem. 288:20607–20615.

Carmo-Silva, A. E., and Salvucci, M. E. 2013. The regulatory properties of rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol. 161:1645–1655.

Gontero, B., and Maberly, S. C. 2012. An intrinsically disordered protein, CP12: Jack of all trades and master of the Calvin cycle. Biochem. Soc. Trans. 40:995–999.

Stotz, M., Mueller-Cajar, O., Ciniawsky, S., Wendler, P., Hartl, F.-U., Bracher, A., Hayer-Hartl, M. 2011. Structure of green-type Rubisco activase from tobacco. Nature Struct. Mol. Biol. 18:1366–1370.

Lebreton, S., Andreescu, S., Graciet, E., and Gontero, B. 2006. Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. Functional consequences for glyceraldehyde-3-phosphate dehydrogenase. FEBS J. 273:3358–3369.

Graciet, E., Lebreton, S., and Gontero, B. 2004. The emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: A glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. J. Exp. Bot. 55:1245–1254.

Balmer, Y., Koller, A., del Val, G., Manieri, W., Schürmann, P., and Buchanan, B. B. 2003. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. U.S.A. 100:370–375.

Wedel, N., Soll, J., and Paap, B. K. 1997. CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc. Natl. Acad. Sci. U.S.A. 94:10479–10484.

Avilan, L., Lebreton, S., and Gontero, B. 2000. Thioredoxin activation of phosphoribulokinase in a bi-enzyme complex from Chlamydomonas reinhardtii chloroplasts. J. Biol. Chem. 275:9447–9451.

Irihimovitch, V., and Shapira, M. 2000. Glutathione redox potential modulated by reactive oxygen species regulates translation of rubisco large subunit in the chloroplast. J. Biol. Chem. 275:16289–16295.

Glucose 6-phosphate Dehydrogenase

Howes, R. E., Piel, F. B., Patil, A. P., Nyangiri, O. A., Gething, P. W., Dewi, M., Hogg, M. M., Battle, K. E., Padilla, C. D., Baird, et al. 2012. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: A geostatistical model-based map. PLoS Med. 9:e1001339.

Wang, X.-T., and Engel, P. C. 2009. Clinical mutants of human glucose 6-phosphate dehydrogenase: Impairment of NADP+ binding affects both folding and stability. Biochim. Biophys. Acta 1792:804–809.

Au, S. W., Gover, S., Lam, V. M., and Adams, M. J. 2000. Human glucose-6-phosphate dehydrogenase: The crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Struct. Fold. Des. 8:293–303.

Salvemini, F., Franze, A., Iervolino, A., Filosa, S., Salzano, S., and Ursini, M. V. 1999. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 274:2750–2757.

Tian, W. N., Braunstein, L. D., Apse, K., Pang, J., Rose, M., Tian, X., and Stanton, R. C. 1999. Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am. J. Physiol. 276:C1121–C1131.

Tian, W. N., Braunstein, L. D., Pang, J., Stuhlmeier, K. M., Xi, Q. C., Tian, X., and Stanton, R. C. 1998. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273:10609–10617.

Ursini, M. V., Parrella, A., Rosa, G., Salzano, S., and Martini, G. 1997. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem. J. 323:801–806.

Evolution

Williams, B. P., Aubry S., and Hibberd, J. M. 2012. Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci. 4:213–220.

Sage, R. F., Sage, T. L., and Kocacinar, F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63:19–47.

Deschamps, P., Haferkamp, I., d’Hulst, C., Neuhaus, H. E., and Ball, S. G. 2008. The relocation of starch metabolism to chloroplasts: When, why and how. Trends Plant Sci. 13:574–582.

Coy, J. F., Dubel, S., Kioschis, P., Thomas, K., Micklem, G., Delius, H., and Poustka, A. 1996. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes. Genomics 32:309–316.

Schenk, G., Layfield, R., Candy, J. M., Duggleby, R. G., and Nixon, P. F. 1997. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. J. Mol. Evol. 44:552–572.

Notaro, R., Afolayan, A., and Luzzatto, L. 2000. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB J. 14:485–494.

Wedel, N., and Soll, J. 1998. Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc. Natl. Acad. Sci. U.S.A. 95:9699–9704.

Martin, W., and Schnarrenberger, C. 1997. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet. 32:1–18.

Ku, M. S., Kano-Murakami, Y., and Matsuoka, M. 1996. Evolution and expression of C4 photosynthesis genes. Plant Physiol. 111:949–957.

Pereto, J. G., Velasco, A. M., Becerra, A., and Lazcano, A. 1999. Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int. Microbiol. 2:3–10.