Chapter 22

Where to Start

Walther, T. C., and Farese Jr., R. V. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714.

Granneman, J. G., and Moore, H.-P. 2008. Location, location: Protein trafficking and lipolysis in adipocytes. Trends Endocrinol. Metab. 19:3–9.

Yang, L., Ding, Y., Chen, Y., Zhang, S., Huo, C., Wang, Y., Yu, J., Zhang, P., Na, H., Zhang, H., et al. 2012. The proteomics of lipid droplets: Structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid Res. 53:1245–1253.

Rinaldo, P., Matern, D., and Bennet, M. J. 2002. Fatty acid oxidation disorders. Annu. Rev. Physiol. 64:477–502.

Rasmussen, B. B., and Wolfe, R. R. 1999. Regulation of fatty acid oxidation in skeletal muscle. Annu. Rev. Nutr. 19:463–484.

Semenkovich, C. F. 1997. Regulation of fatty acid synthase (FAS). Prog. Lipid Res. 36:43–53.

Wolf, G. 1996. Nutritional and hormonal regulation of fatty acid synthase. Nutr. Rev. 54:122–123.

Books

Lawrence, G. D. 2010. The Fats of Life: Essential Fatty Acids in Health and Disease. Rutgers University Press.

Vance, D. E., and Vance, J. E. (Eds.). 2008. Biochemistry of Lipids, Lipoproteins, and Membranes. Elsevier.

Stipanuk, M. H. (Ed.). 2006. Biochemical and Physiological Aspects of Human Nutrition. Saunders.

Fatty Acid Oxidation

Ross, L. E., Xiao, X., and Lowe, M. E. 2013. Identification of amino acids in human colipase that mediate adsorption to lipid emulsions and mixed micelles. Biochim. Biophys. Acta 1831: 1052–1059.

Badin, P. M., Loubière, C., Coonen, M., Louche, K., Tavernier, G., Bourlier, V., Mairal, A., Rustan, A. C., Smith, S. R., Langin, D., et al. 2012. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58. J. Lipid Res. 53:839–848.

Yang, X., Lu, X., Lombès, M., Rha, G. B., Chi, Y. I., Guerin, T. M., Smart, E. J., Liu, J. 2010. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11:194–205.

Wang, Y., Mohsen, A.-W., Mihalik, S. J., Goetzman, E. S., Vockley, J. 2010. Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes. J.Biol.Chem. 285:29834–29841.

Ahmadian, M., Duncan, R. E., and Sul, H. S. 2009. The skinny on fat: Lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20:424–428.

Farese, R. V., Jr., and Walther, T. C. 2009. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860.

Goodman, J. L. 2008. The gregarious lipid droplet. J. Biol. Chem. 283: 28005–28009.

Saha, P. K., Kojima, H., Marinez-Botas, J., Sunehag, A. L., and Chan, L. 2004. Metabolic adaptations in absence of perilipin. J. Biol. Chem. 279:35150–35158.

Barycki, J. J., O’Brien, L. K., Strauss, A. W., and Banaszak, L. J. 2000. Sequestration of the active site by interdomain shifting: Crystallographic and spectroscopic evidence for distinct conformations of l-3-hydroxyacyl-CoA dehydrogenase. J. Biol. Chem. 275:27186–27196.

Ramsay, R. R. 2000. The carnitine acyltransferases: Modulators of acyl-CoA-dependent reactions. Biochem. Soc. Trans. 28:182–186.

Fatty Acid Synthesis

Sun, T., Hayakawa, K., Bateman, K. S., and Fraser, M. E. 2010. Identification of the citrate-binding site of human ATP- citrate lyase using x-ray crystallography. J. Biol. Chem. 285: 27418–27428.

Fan, F., Williams, H. J., Boyer, J. G., Graham, T. L., Zhao, H., Lehr, R., Qi, H., Schwartz, B., Raushel, F. M., and Meek, T. D. 2012. On the catalytic mechanism of human ATP citrate lyase. Biochemistry 51:5198−5211.

Chypre, M., Zaidi, N., and Smans, K. 2012. ATP-citrate lyase: A minireview. Biochem. Biophys. Res. Commun. 422:1–4.

Maier, T., Leibundgut, M., and Ban, N. 2008. The crystal structure of a mammalian fatty acid synthase. Science 321:1315–1322.

Ming, D., Kong, Y., Wakil, S. J., Brink, J., and Ma, J. 2002. Domain movements in human fatty acid synthase by quantized elastic deformational model. Proc. Natl. Acad. Sci. U.S.A. 99:7895–7899.

Zhang, Y.-M., Rao, M. S., Heath, R. J., Price, A. C., Olson, A. J., Rock, C. O., and White, S. W. 2001. Identification and analysis of the acyl carrier protein (ACP) docking site on β-ketoacyl-ACP synthase III. J. Biol. Chem. 276:8231–8238.

Davies, C., Heath, R. J., White, S. W., and Rock, C. O. 2000. The 1.8 Å crystal structure and active-site architecture of β-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli. Struct. Fold. Design 8:185–195.

Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., and Kuhajda, F. P. 2000. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288:2379–2381.

Acetyl CoA Carboxylase

Kim, C.-W., Moon, Y.-A., Park, S. W., Cheng, D., Kwon, H. J., and Horton, J. D. 2010. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 107:9626–9631.

Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E., and Lee, W. M. 2006. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34:223–227.

Hardie, D. G., Ross, F. A., and Hawley, S. A. 2013. AMP-activated protein kinase: A target for drugs both ancient and modern. Chem. Biol. 19:1222–1236.

Munday, M. R. 2002. Regulation of acetyl CoA carboxylase. Biochem. Soc. Trans. 30:1059–1064.

Thoden, J. B., Blanchard, C. Z., Holden, H. M., and Waldrop, G. L. 2000. Movement of the biotin carboxylase B-domain as a result of ATP binding. J. Biol. Chem. 275:16183–16190.

Eicosanoids

De Caterina, R. 2011. n–3 Fatty acids in cardiovascular disease. New Engl. J. Med. 364:2439–2450.

Harizi, H., Corcuff, J.-B., and Gualde, N. 2008. Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology. Trends Mol. Med. 14:461–469.

B25

Nakamura, M. T., and Nara, T. Y. 2004. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 24:345–376.

Malkowski, M. G., Ginell, S. L., Smith, W. L., and Garavito, R. M. 2000. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 289:1933–1937.

Smith, T., McCracken, J., Shin, Y.-K., and DeWitt, D. 2000. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J. Biol. Chem. 275: 40407–40415.

Kalgutkar, A. S., Crews, B. C., Rowlinson, S. W., Garner, C., Seibert, K., and Marnett L. J. 1998. Aspirin-like molecules that covalently inactivate cyclooxygenase-2. Science 280:1268–1270.

Lands, W. E. 1991. Biosynthesis of prostaglandins. Annu. Rev. Nutr. 11:41–60.

Sigal, E. 1991. The molecular biology of mammalian arachidonic acid metabolism. Am. J. Physiol. 260:L13–L28.

Weissmann, G. 1991. Aspirin. Sci. Am. 264(1):84–90.

Vane, J. R., Flower, R. J., and Botting, R. M. 1990. History of aspirin and its mechanism of action. Stroke (12 suppl.):IV12–IV23.

Genetic Diseases and Cancer

Celestino-Soper, P. B. S., Violante, S., Crawford, E. L., Luo, R., Lionel, A. C., Delaby, E., Cai, G., Sadikovic, B., Lee, K., Lo, C., et al. 2012. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc. Natl. Acad. Sci. U.S.A. 109:7947–7981.

Currie, E., Schulze, A., Zechner, R., Walther, T. C., and Farese, Jr. R. V. 2013. Cellular fatty acid metabolism and cancer. Cell. Metab. 18: 153–161.

Lutas, A. and Yellen, G. 2013. The ketogenic diet: Metabolic influences on brain excitability and epilepsy. Trends Neurosci. 36:32–40.

Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G., and Swinnen, J. V. 2007. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67:8180–8187.

Kuhajda, F. P. 2006. Fatty acid synthase and cancer: New application of an old pathway. Cancer Res. 66:5977–5980.

Nyhan, W. L., Barshop, B. A., and Ozand, P. T. 2005. Atlas of Metabolic Diseases (2d ed., pp. 339–300). Hodder Arnold.

Roe, C. R., and Coates, P. M. 2001. Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of Inherited Diseases (8th ed., pp. 2297–2326), edited by C. R. Scriver., W. S. Sly, B. Childs, A. L. Beaudet, D. Valle, K. W. Kinzler, and B. Vogelstein. McGraw-Hill.

Brivet, M., Boutron, A., Slama, A., Costa, C., Thuillier, L., Demaugre, F., Rabier, D., Saudubray, J. M., and Bonnefont, J. P. 1999. Defects in activation and transport of fatty acids. J. Inherit. Metab. Dis. 22:428–441.

Wanders, R. J., van Grunsven, E. G., and Jansen, G. A. 2000. Lipid metabolism in peroxisomes: Enzymology, functions and dysfunctions of the fatty acid α- and β-oxidation systems in humans. Biochem. Soc. Trans. 28:141–149.

Wanders, R. J., Vreken, P., den Boer, M. E., Wijburg, F. A., van Gennip, A. H., and Ijist, L. 1999. Disorders of mitochondrial fatty acyl-CoA β-oxidation. J. Inherit. Metab. Dis. 22:442–487.

Kerner, J., and Hoppel, C. 1998. Genetic disorders of carnitine metabolism and their nutritional management. Annu. Rev. Nutr. 18: 179–206.

Bartlett, K., and Pourfarzam, M. 1998. Recent developments in the detection of inherited disorders of mitochondrial β-oxidation. Biochem. Soc. Trans. 26:145–152.

Pollitt, R. J. 1995. Disorders of mitochondrial long-chain fatty acid oxidation. J. Inherit. Metab. Dis. 18:473–490.