Chapter 23

Where to Start

Varshavsky, A. 2012. The Ubiquitin System, an Immense Realm. Annu. Rev. Biochem. 81:167–76.

Ubiquitin-Mediated Protein Regulation. 2009. Annu. Rev. Biochem. 78: A series of reviews on the various roles of ubiquitin.

Torchinsky, Y. M. 1989. Transamination: Its discovery, biological and chemical aspects. Trends Biochem. Sci. 12:115–117.

Watford, M. 2003. The urea cycle. Biochem. Mol. Biol. Ed. 31: 289–297.

Books

Magnusson, S. 2010. Life of Pee: The Story of How Urine Got Everywhere. Aurum.

Bender, D. A. 2012. Amino Acid Metabolism (3rd ed.). Wiley-Blackwell.

Lippard, S. J., and Berg, J. M. 1994. Principles of Bioinorganic Chemistry. University Science Books.

Walsh, C. 1979. Enzymatic Reaction Mechanisms. W. H. Freeman and Company.

Christen, P., and Metzler, D. E. 1985. Transaminases. Wiley.

Ubiquitin and the Proteasome

Shemorry, A., Hwang, C.-S., and Varshavsky, A. 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50:540–551.

Liu, C.-W., and Jacobson, A. D. 2013. Functions of the 19S complex in proteasomal degradation. Trends Biochem. Sci. 38:103−110.

Ehlinger, A., and Walters, K. J. 2013. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 52:3618−3628.

Peth, A. Nathan, J. A. and Goldberg, A. L. 2013. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J. Biol. Chem. 288:29215–29222.

Tomko, Jr., R. J., and Hochstrasser, M. 2013. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82:415–445.

Komander, D., and Rape, M. 2012. The ubiquitin code. Annu. Rev. Biochem. 81:203–229.

Greer, P. L., Hanayama, R., Bloodgood, B. L., Mardinly, A. R., Lipton, D. M., Flavell, S. W., Kim, T.-K., Griffith, E. C., Waldon, Z., Maehr, R., et al. 2010. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 140:704–716.

Peth, A., Besche, H. C., and Goldberg A. L. 2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36:794–804.

Lin, G., Li, D., Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, K., Schneider, J., Chidawanyika, T., Warren, J. D., et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:621–626.

Giasson, B. I., and Lee, V. M.-Y. 2003. Are ubiquitination pathways central to Parkinson’s disease? Cell 114:1–8.

Pagano, M., and Benmaamar, R. 2003. When protein destruction runs amok, malignancy is on the loose. Cancer Cell 4:251–256.

Hochstrasser, M. 2000. Evolution and function of ubiquitin-like protein-conjugation systems. Nat. Cell Biol. 2:E153–E157.

Pyridoxal Phosphate-Dependent Enzymes

Eliot, A. C., and Kirsch, J. F. 2004. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73:383–415.

Mehta, P. K., and Christen, P. 2000. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 74:129–184.

Schneider, G., Kack, H., and Lindqvist, Y. 2000. The manifold of vitamin B6 dependent enzymes. Structure Fold Des. 8:R1–R6.

B26

Urea Cycle Enzymes

Haeussinger, D., and Sies, H. 2013. Hepatic encephalopathy: Clinical aspects and pathogenetic concept. Arch. Biochem. Biophys. 536:97–100.

Li, M., Li, C., Allen, A., Stanley, C. A., and Smith, T. J. 2012. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys. 519:69–80.

Nakagawa, T., Lomb, D. J., Haigis, M. C., and Guarente, L. 2009. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570.

Lawson, F. S., Charlebois, R. L., and Dillon, J. A. 1996. Phylogenetic analysis of carbamoylphosphate synthetase genes: Complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol. Biol. Evol. 13:970–977.

McCudden, C. R., and Powers-Lee, S. G. 1996. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I. J. Biol. Chem. 271:18285–18294.

Amino Acid Degradation

Li, M., Smith, C. J., Walker, M. T., and Smith, T. J. 2009. Novel inhibitors complexed with glutamate dehydrogenase: Allosteric regulation by control of protein dynamics. J. Biol. Chem. 284:22988–23000.

Smith, T. J., and Stanley, C. A. 2008. Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem. Sci. 33:557–564.

Fusetti, F., Erlandsen, H., Flatmark, T., and Stevens, R. C. 1998. Structure of tetrameric human phenylalanine hydroxylase and its implications for phenylketonuria. J. Biol. Chem. 273: 16962–16967.

Titus, G. P., Mueller, H. A., Burgner, J., Rodriguez De Cordoba, S., Penalva, M. A., and Timm, D. E. 2000. Crystal structure of human homogentisate dioxygenase. Nat. Struct. Biol. 7:542–546.

Erlandsen, H., and Stevens, R. C. 1999. The structural basis of phenylketonuria. Mol. Genet. Metab. 68:103–125.

Genetic Diseases

Jayakumar, A. R., Liu, M., Moriyama, M. Ramakrishnan, R., Forbush III, B., Reddy, P. V. V., and Norenberg, M. D. 2008. Na-K-Cl cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J. Biol. Chem. 283:33874–33882.

Scriver, C. R., and Sly, W. S. (Eds.), Childs, B., Beaudet, A. L., Valle, D., Kinzler, K. W., and Vogelstein, B. 2001. The Metabolic Basis of Inherited Disease (8th ed.). McGraw-Hill.

Historical Aspects and the Process of Discovery

Cooper, A. J. L., and Meister, A. 1989. An appreciation of Professor Alexander E. Braunstein: The discovery and scope of enzymatic transamination. Biochimie 71:387–404.

Garrod, A. E. 1909. Inborn Errors in Metabolism. Oxford University Press (reprinted in 1963 with a supplement by H. Harris).

Childs, B. 1970. Sir Archibald Garrod’s conception of chemical individuality: A modern appreciation. New Engl. J. Med. 282:71–78.

Holmes, F. L. 1980. Hans Krebs and the discovery of the ornithine cycle. Fed. Proc. 39:216–225.