Chapter 26

Where to Start

Vickers, K. C., and Remaley, A. T. 2014. HDL and cholesterol: Life after the divorce? J. Lipid Res. 55:4–12.

Lambert, G., Sjouke, B., Choque, B., Kastelein, J. J. P., and Hovingh, G. K. 2012. The PCSK9 decade. J. Lipid Res. 53:2515–2524.

Brown, M. S., and Goldstein, J. L. 2009. Cholesterol feedback: From Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50:S15–S27.

Gimpl, G., Burger, K., and Fahrenholz, F. 2002. A closer look at the cholesterol sensor. Trends Biochem. Sci. 27:595–599.

B29

Oram, J. F. 2002. Molecular basis of cholesterol homeostasis: Lessons from Tangier disease and ABCA1. Trends Mol. Med. 8:168–173.

Endo, A. 1992. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 33:1569–1582.

Books

Vance, J. E., and Vance, D. E. (Eds.). 2008. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier.

Nyhan, W. L., Barshop, B. A., and Al-Aqeel, A. I. 2011. Atlas of Metabolic Diseases. (3d ed., pp. 659–780). Hodder Arnold.

Scriver, C. R., Sly, W. S., Childs, B., Beaudet, A. L., Valle, D., Kinzler, K. W., and Vogelstein, B. (Eds.). 2001. The Metabolic and Molecular Bases of Inherited Diseases (8th ed., pp. 2707–2960). McGraw-Hill.

Phospholipids and Sphingolipids

Lee, J., Taneva, S. G., Holland, B. W., Tieleman, D. P., and Cornell, R. B. 2014. Structural basis for autoinhibition of CTP: phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. J. Biol. Chem. 289:1742–1755.

Tang, W. H. W., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, F., Wu, Y., and Hazen, S. L. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl. J. Med. 368:1575–1584.

Pascual, F., and Carman, G. M. 2013. Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim. Biophys. Acta 1831:514–522.

Bennett, B. J., de Aguiar Vallim, T. Q., Wang, Z., Shih, D. M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., Crooke, R., et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17:49–60.

Claypool, S. M., and Koehler C. M. 2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37:32–41.

Carman, G. M., and Han, G.-S. 2009. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284:2593–2597.

Bartke, N., and Hannun, Y. A. 2009. Bioactive sphingolipids: Metabolism and function. J. Lipid Res. 50:S91–S96.

Lee, J., Johnson, J., Ding, Z., Paetzel, M., and Cornell, R. B. 2009. Crystal structure of a mammalian CTP: Phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J. Biol. Chem. 284:33535–33548.

Nye, C. K., Hanson, R. W., and Kalhan, S. C. 2008. Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J. Biol. Chem. 283:27565–27574.

Biosynthesis of Cholesterol and Steroids

Radhakrishnan, A., Goldstein, J. L., McDonald, J. G., and Brown, M. S. 2008. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: A delicate balance. Cell Metab. 8:512–521.

DeBose-Boyd, R. A. 2008. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 18:609–621.

Hampton, R. Y. 2002. Proteolysis and sterol regulation. Annu. Rev. Cell Dev. Biol. 18:345–378.

Kelley, R. I., and Herman, G. E. 2001. Inborn errors of sterol biosynthesis. Annu. Rev. Genom. Hum. Genet. 2:299–341.

Istvan, E. S., and Deisenhofer, J. 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164.

Lipoproteins and Their Receptors

Gustafsen, C., Kjolby, M., Nyegaard, M., Mattheisen, M., Lundhede, J., Buttenschøn, H., Mors, O., Bentzon, J. F., Madsen, P., Nykjaer, A., et al. 2014. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 19:310–318.

Rye, K-A., Bursill, C. A., Lambert, G., Tabet, F., and Barter, P. J. 2009. The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 50:S195–S200.

Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J., and Rothblat, G. H. 2009. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50:S189–S194.

Tall, A. R., Yvan-Charvet, L., Terasaka, N., Pagler, T., and Wang, N. 2008. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab. 7:365–375.

Jeon, H., and Blacklow, S. C. 2005. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74:535–562.

Beglova, N., and Blacklow, S. C. 2005. The LDL receptor: How acid pulls the trigger. Trends Biochem. Sci. 30:309–316.

Oxygen Activation and P450 Catalysis

Stiles, A. R., McDonald, J. G., Bauman, D. R., and Russell, D. W. 2009. CYP7B1: One cytochrome P450, two human genetic diseases, and multiple physiological functions. J. Biol. Chem. 284:28485–28489.

Zhou, S.-F., Liu, J.-P., and Chowbay, B. 2009. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 4:89–295.

Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., Vonrhein, C., Tickle, I. J., and Jhoti, H. 2004. Crystal structure of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.