Chapter 30

Where to Start

Yusupova, G., and Yusupov, M. 2014. High-resolution structure of the eukaryotic 80S ribosome. Annu. Rev. Biochem. 83:467–486.

Anger, A. M., Armache, J.-P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson. D. N., and Beckmann, R. 2013. Structures of the human and Drosophila 80S ribosome. Nature 497:80–87.

Novoa, E. M., and Ribas de Pouplana, L. 2012. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. 28:574−581.

Ibba, M., Curnow, A. W., and Söll, D. 1997. Aminoacyl-tRNA synthesis: Divergent routes to a common goal. Trends Biochem. Sci. 22:39–42.

Koonin, E. V., and Novozhilov, A. S. 2009. Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61:99–111.

Schimmel, P., and Ribas de Pouplana, L. 2000. Footprints of aminoacyl-tRNA synthetases are everywhere. Trends Biochem. Sci. 25:207–209.

Books

Rodnina, M. V., Wintermeyer, W., and Green, R. 2011 (Eds.). Ribosome Structure, Function and Dynamics. Springer.

Cold Spring Harbor Symposia on Quantitative Biology. 2001. Volume 66. The Ribosome. Cold Spring Harbor Laboratory Press.

Gesteland, R. F., Atkins, J. F., and Cech, T. (Eds.). 2005. The RNA World (3d ed.). Cold Spring Harbor Laboratory Press.

B35

Garrett, R., Douthwaite, S. R., Liljas, A., Matheson, A. T., Moore, P. B., and Noller, H. F. 2000. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. The American Society for Microbiology.

Aminoacyl-tRNA Synthetases

Kaminska, M., Havrylenko, S., Decottignies, P., Le Maréchal, P., Negrutskii, B., and Mirande, M. 2009. Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J. Biol. Chem. 284:13746–13754.

Park, S. G., Schimmel, P., and Kim, S. 2008. Aminoacyl tRNA synthetases and their connections to disease. Proc. Natl. Acad. Sci. U.S.A. 105:11043–11049.

Ibba, M., and Söll, D. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69:617–650.

Sankaranarayanan, R., Dock-Bregeon, A. C., Rees, B., Bovee, M., Caillet, J., Romby, P., Francklyn, C. S., and Moras, D. 2000. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat. Struct. Biol. 7:461–465.

Sankaranarayanan, R., Dock-Bregeon, A. C., Romby, P., Caillet, J., Springer, M., Rees, B., Ehresmann, C., Ehresmann, B., and Moras, D. 1999. The structure of threonyl-tRNA synthetase-tRNAThr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97:371–381.

Dock-Bregeon, A., Sankaranarayanan, R., Romby, P., Caillet, J., Springer, M., Rees, B., Francklyn, C. S., Ehresmann, C., and Moras, D. 2000. Transfer RNA-mediated editing in threonyl-tRNA synthetase: The class II solution to the double discrimination problem. Cell 103:877–884.

de Pouplana, L. R., and Schimmel, P. 2000. A view into the origin of life: Aminoacyl-tRNA synthetases. Cell. Mol. Life Sci. 57:865–870.

Transfer RNA

Ibba, M., Becker, H. D., Stathopoulos, C., Tumbula, D. L., and Söll, D. 2000. The adaptor hypothesis revisited. Trends Biochem. Sci. 25:311–316.

Weisblum, B. 1999. Back to Camelot: Defining the specific role of tRNA in protein synthesis. Trends Biochem. Sci. 24:247–250.

Ribosomes and Ribosomal RNAs

Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., and Ban, N. 2012. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci. 37:189–198.

Jin, H., Kelley, A. C., Loakes, D., and Ramakrishnan, V. 2010. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc. Natl. Acad. Sci. U.S.A. 107:85938598.

Rodnina, M. V., and Wintermeyer, W. 2009. Recent mechanistic insights into eukaryotic ribosomes. Curr. Opin. Cell Biol. 21:435–443.

Dinman, J. D. 2008. The eukaryotic ribosome: Current status and challenges. J. Biol. Chem. 284:11761–11765.

Wen, J.-D., Lancaster, L., Hodges, C., Zeri, A.-C., Yoshimura, S. H., Noller, H. F., Bustamante, C., and Tinoco, I., Jr. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–603.

Korostelev, A., and Noller, H. F. 2007. The ribosome in focus: New structures bring insights. Trends Biochem. Sci. 32:434–441.

Brandt, F., Etchells, S. A., Ortiz, J. O., Elcock, A. H., Hartl, F. U., and Baumeister, W. 2009. The native 3D organization of bacterial polysomes. Cell 136:261–271.

Initiation Factors

Søgaard, B., Sørensen, H. P., Mortensen, K. K., and Sperling-Petersen, H. U. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69:101–123.

Carter, A. P., Clemons, W. M., Jr., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498–501.

Guenneugues, M., Caserta, E., Brandi, L., Spurio, R., Meunier, S., Pon, C. L., Boelens, R., and Gualerzi, C. O. 2000. Mapping the fMet-tRNAfMet binding site of initiation factor IF2. EMBO J. 19:5233–5240.

Meunier, S., Spurio, R., Czisch, M., Wechselberger, R., Guenneugues, M., Gualerzi, C. O., and Boelens, R. 2000. Structure of the fMet-tRNAfMet-binding domain of B. stearothermophilus initiation factor IF2. EMBO J. 19:1918–1926.

Elongation Factors

Voorhees R. M., and Ramakrishnan, V. 2013. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82:203–236.

Liu, S., Bachran, C., Gupta, P., Miller-Randolph, S., Wang, H., Crown, D., Zhang, Y., Kavaliauskas, D., Nissen, P., and Knudsen, C. R. 2012. The busiest of all ribosomal assistants: Elongation factor Tu. Biochemistry 51:2642−2651.

Schuette, J.-C., Murphy, F. V., Kelley, A. C., Weir, J. R., Giesebrecht, J., Connell, S. R., Loerke, J., Mielke, T., Zhang, W., Penczek, P. A., et al. 2009. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28:755–765.

Stark, H., Rodnina, M. V., Wieden, H. J., van Heel, M., and Wintermeyer, W. 2000. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100:301–309.

Baensch, M., Frank, R., and Kohl, J. 1998. Conservation of the amino-terminal epitope of elongation factor Tu in Eubacteria and Archaea. Microbiology 144:2241–2246.

Krasny, L., Mesters, J. R., Tieleman, L. N., Kraal, B., Fucik, V., Hilgenfeld, R., and Jonak, J. 1998. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J. Mol. Biol. 283:371–381.

Pape, T., Wintermeyer, W., and Rodnina, M. V. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17:7490–7497.

Piepenburg, O., Pape, T., Pleiss, J. A., Wintermeyer, W., Uhlenbeck, O. C., and Rodnina, M. V. 2000. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39:1734–1738.

Peptide-Bond Formation and Translocation

Rodnina, M. V. 2013. The ribosome as a versatile catalyst: Reactions at the peptidyl transferase center. Curr. Opin. Struct. Biol. 23:595–602.

Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W., and Puglisi, J. D. 2010. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:1012–1018.

Beringer, M., and. Rodnina, M. V. 2007. The ribosomal peptidyl transferase. Mol. Cell 26:311–321.

Yarus, M., and Welch, M. 2000. Peptidyl transferase: Ancient and exiguous. Chem. Biol. 7:R187–R190.

Vladimirov, S. N., Druzina, Z., Wang, R., and Cooperman, B. S. 2000. Identification of 50S components neighboring 23S rRNA nucleotides A2448 and U2604 within the peptidyl transferase center of Escherichia coli ribosomes. Biochemistry 39:183–193.

Frank, J., and Agrawal, R. K. 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322.

Termination

Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R. M., Petry, S., Kelley, A. C., and Ramakrishnan, V. 2008. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956.

B36

Trobro, S., and Åqvist, S. 2007. A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol. Cell 27:758–766.

Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J., Trakhanov, S., Scott, W. G., and Noller, H. F. 2008. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. U.S.A. 105: 19684–19689.

Wilson, D. N., Schluenzen, F., Harms, J. M., Yoshida, T., Ohkubo, T., Albrecht, A., Buerger, J., Kobayashi, Y., and Fucini, P. 2005. X-ray crystallography study on ribosome recycling: The mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24:251–260.

Kisselev, L. L., and Buckingham, R. H. 2000. Translational termination comes of age. Trends Biochem. Sci. 25:561–566.

Fidelity and Proofreading

Zaher, H. S., and Green, R. 2009. Quality control by the ribosome following peptide bond formation. Nature 457:161–166.

Zaher, H. S., and Green, R. 2009. Fidelity at the molecular level: Lessons from protein synthesis. Cell 136:746–762.

Ogle, J. M., and Ramakrishnan, V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74:129–177.

Eukaryotic Protein Synthesis

Hinnebusch, A. G. 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–812.

Wein, A. N., Singh, R., Fattah, R., and Leppla, S. H. 2012. Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc. Natl. Acad. Sci. U.S.A. 109:13817–13822.

Rhoads, R. E. 2009. eIF4E: New family members, new binding partners, new roles. J. Biol. Chem. 284:16711–16715.

Marintchev, A., Edmonds, K. A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., Sonenberg, N., and Wagner, G. 2009. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447–460.

Fitzgerald, K. D., and Semler, B. L. 2009. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta 1789:518–528.

Mitchell, S. F., and Lorsch, J. R. 2008. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. J. Biol. Chem. 283:27345–27349.

Amrani, A., Ghosh, S., Mangus, D. A., and Jacobson, A. 2008. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280.

Sachs, A. B., and Varani, G. 2000. Eukaryotic translation initiation: There are (at least) two sides to every story. Nat. Struct. Biol. 7:356–361.

Kozak, M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208.

Bushell, M., Wood, W., Clemens, M. J., and Morley, S. J. 2000. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur. J. Biochem. 267:1083–1091.

Das, S., Ghosh, R., and Maitra, U. 2001. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276:6720–6726.

Lee, J. H., Choi, S. K., Roll-Mecak, A., Burley, S. K., and Dever, T. E. 1999. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc. Natl. Acad. Sci. U.S.A. 96:4342–4347.

Pestova, T. V., and Hellen, C. U. 2000. The structure and function of initiation factors in eukaryotic protein synthesis. Cell. Mol. Life Sci. 57:651–674.

Antibiotics and Toxins

Belova, L., Tenson, T., Xiong, L., McNicholas, P. M., and Mankin, A. S. 2001. A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit. Proc. Natl. Acad. Sci. U.S.A. 98:3726–3731.

Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–1154.

Porse, B. T., and Garrett, R. A. 1999. Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97:423–426.

Lord, M. J., Jolliffe, N. A., Marsden, C. J., Pateman, C. S., Smith, D. S., Spooner, R. A., Watson, P. D., and Roberts, L. M. 2003. Ricin: Mechanisms of toxicity. Toxicol. Rev. 22:53–64.

Protein Transport Across Membranes

Akopian, D., Shen, K., Zhang, X., and Shan, S. 2013. Signal recognition particle: An essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721.

Nyathi, Y., Wilkinson, B. M., and Pool, M. R. 2013. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833:2392–2402.

Janda, C. Y., Li, J., Oubridge, C., Hernández, H., Robinson, C. V., and Nagai, K. 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465:507–510.

Cross, B. C. S., Sinning, I., Luirink, J., and High, S. 2009. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell. Biol. 10:255–264.

Shan, S., Schmid, S. L., and Zhang, X. 2009. Signal recognition particle (SRP) and SRP receptor: A new paradigm for multistate regulatory GTPases. Biochemistry 48:6696–6704.

Johnson, A. E. 2009. The structural and functional coupling of two molecular machines, the ribosome and the translocon. J. Cell Biol. 185:765–767.

Pool, R. P. 2009. A transmembrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J. Cell Biol. 185:889–902.

Egea, P. F., Stroud, R. M., and Walter, P. 2005. Targeting proteins to membranes: Structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15:213–220.

Halic, M., and Beckmann, R. 2005. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol.15:116–125.

Doudna, J. A., and Batey, R. T. 2004. Structural insights into the signal recognition particle. Annu. Rev. Biochem. 73:539–557.

Schnell, D. J., and Hebert, D. N. 2003. Protein translocons: Multifunctional mediators of protein translocation across membranes. Cell 112:491–505.