Where to Start
Yusupova, G., and Yusupov, M. 2014. High-
Anger, A. M., Armache, J.-P., Berninghausen, O., Habeck, M., Subklewe, M., Wilson. D. N., and Beckmann, R. 2013. Structures of the human and Drosophila 80S ribosome. Nature 497:80–
Novoa, E. M., and Ribas de Pouplana, L. 2012. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. 28:574−581.
Ibba, M., Curnow, A. W., and Söll, D. 1997. Aminoacyl-
Koonin, E. V., and Novozhilov, A. S. 2009. Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61:99–
Schimmel, P., and Ribas de Pouplana, L. 2000. Footprints of aminoacyl-
Rodnina, M. V., Wintermeyer, W., and Green, R. 2011 (Eds.). Ribosome Structure, Function and Dynamics. Springer.
Cold Spring Harbor Symposia on Quantitative Biology. 2001. Volume 66. The Ribosome. Cold Spring Harbor Laboratory Press.
Gesteland, R. F., Atkins, J. F., and Cech, T. (Eds.). 2005. The RNA World (3d ed.). Cold Spring Harbor Laboratory Press.
B35
Garrett, R., Douthwaite, S. R., Liljas, A., Matheson, A. T., Moore, P. B., and Noller, H. F. 2000. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. The American Society for Microbiology.
Kaminska, M., Havrylenko, S., Decottignies, P., Le Maréchal, P., Negrutskii, B., and Mirande, M. 2009. Dynamic organization of aminoacyl-
Park, S. G., Schimmel, P., and Kim, S. 2008. Aminoacyl tRNA synthetases and their connections to disease. Proc. Natl. Acad. Sci. U.S.A. 105:11043–
Ibba, M., and Söll, D. 2000. Aminoacyl-
Sankaranarayanan, R., Dock-
Sankaranarayanan, R., Dock-
Dock-
de Pouplana, L. R., and Schimmel, P. 2000. A view into the origin of life: Aminoacyl-
Ibba, M., Becker, H. D., Stathopoulos, C., Tumbula, D. L., and Söll, D. 2000. The adaptor hypothesis revisited. Trends Biochem. Sci. 25:311–
Weisblum, B. 1999. Back to Camelot: Defining the specific role of tRNA in protein synthesis. Trends Biochem. Sci. 24:247–
Klinge, S., Voigts-
Jin, H., Kelley, A. C., Loakes, D., and Ramakrishnan, V. 2010. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc. Natl. Acad. Sci. U.S.A. 107:8593–8598.
Rodnina, M. V., and Wintermeyer, W. 2009. Recent mechanistic insights into eukaryotic ribosomes. Curr. Opin. Cell Biol. 21:435–
Dinman, J. D. 2008. The eukaryotic ribosome: Current status and challenges. J. Biol. Chem. 284:11761–
Wen, J.-D., Lancaster, L., Hodges, C., Zeri, A.-C., Yoshimura, S. H., Noller, H. F., Bustamante, C., and Tinoco, I., Jr. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–
Korostelev, A., and Noller, H. F. 2007. The ribosome in focus: New structures bring insights. Trends Biochem. Sci. 32:434–
Brandt, F., Etchells, S. A., Ortiz, J. O., Elcock, A. H., Hartl, F. U., and Baumeister, W. 2009. The native 3D organization of bacterial polysomes. Cell 136:261–
Søgaard, B., Sørensen, H. P., Mortensen, K. K., and Sperling-
Carter, A. P., Clemons, W. M., Jr., Brodersen, D. E., Morgan-
Guenneugues, M., Caserta, E., Brandi, L., Spurio, R., Meunier, S., Pon, C. L., Boelens, R., and Gualerzi, C. O. 2000. Mapping the fMet-
Meunier, S., Spurio, R., Czisch, M., Wechselberger, R., Guenneugues, M., Gualerzi, C. O., and Boelens, R. 2000. Structure of the fMet-
Voorhees R. M., and Ramakrishnan, V. 2013. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82:203–
Liu, S., Bachran, C., Gupta, P., Miller-
Schuette, J.-C., Murphy, F. V., Kelley, A. C., Weir, J. R., Giesebrecht, J., Connell, S. R., Loerke, J., Mielke, T., Zhang, W., Penczek, P. A., et al. 2009. GTPase activation of elongation factor EF-
Stark, H., Rodnina, M. V., Wieden, H. J., van Heel, M., and Wintermeyer, W. 2000. Large-
Baensch, M., Frank, R., and Kohl, J. 1998. Conservation of the amino-
Krasny, L., Mesters, J. R., Tieleman, L. N., Kraal, B., Fucik, V., Hilgenfeld, R., and Jonak, J. 1998. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J. Mol. Biol. 283:371–
Pape, T., Wintermeyer, W., and Rodnina, M. V. 1998. Complete kinetic mechanism of elongation factor Tu-
Piepenburg, O., Pape, T., Pleiss, J. A., Wintermeyer, W., Uhlenbeck, O. C., and Rodnina, M. V. 2000. Intact aminoacyl-
Rodnina, M. V. 2013. The ribosome as a versatile catalyst: Reactions at the peptidyl transferase center. Curr. Opin. Struct. Biol. 23:595–
Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W., and Puglisi, J. D. 2010. Real-
Beringer, M., and. Rodnina, M. V. 2007. The ribosomal peptidyl transferase. Mol. Cell 26:311–
Yarus, M., and Welch, M. 2000. Peptidyl transferase: Ancient and exiguous. Chem. Biol. 7:R187–
Vladimirov, S. N., Druzina, Z., Wang, R., and Cooperman, B. S. 2000. Identification of 50S components neighboring 23S rRNA nucleotides A2448 and U2604 within the peptidyl transferase center of Escherichia coli ribosomes. Biochemistry 39:183–
Frank, J., and Agrawal, R. K. 2000. A ratchet-
Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R. M., Petry, S., Kelley, A. C., and Ramakrishnan, V. 2008. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–
B36
Trobro, S., and Åqvist, S. 2007. A model for how ribosomal release factors induce peptidyl-
Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J., Trakhanov, S., Scott, W. G., and Noller, H. F. 2008. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. U.S.A. 105: 19684–
Wilson, D. N., Schluenzen, F., Harms, J. M., Yoshida, T., Ohkubo, T., Albrecht, A., Buerger, J., Kobayashi, Y., and Fucini, P. 2005. X-
Kisselev, L. L., and Buckingham, R. H. 2000. Translational termination comes of age. Trends Biochem. Sci. 25:561–
Zaher, H. S., and Green, R. 2009. Quality control by the ribosome following peptide bond formation. Nature 457:161–
Zaher, H. S., and Green, R. 2009. Fidelity at the molecular level: Lessons from protein synthesis. Cell 136:746–
Ogle, J. M., and Ramakrishnan, V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74:129–
Hinnebusch, A. G. 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–
Wein, A. N., Singh, R., Fattah, R., and Leppla, S. H. 2012. Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc. Natl. Acad. Sci. U.S.A. 109:13817–
Rhoads, R. E. 2009. eIF4E: New family members, new binding partners, new roles. J. Biol. Chem. 284:16711–
Marintchev, A., Edmonds, K. A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., Sonenberg, N., and Wagner, G. 2009. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136:447–
Fitzgerald, K. D., and Semler, B. L. 2009. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta 1789:518–
Mitchell, S. F., and Lorsch, J. R. 2008. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition. J. Biol. Chem. 283:27345–
Amrani, A., Ghosh, S., Mangus, D. A., and Jacobson, A. 2008. Translation factors promote the formation of two states of the closed-
Sachs, A. B., and Varani, G. 2000. Eukaryotic translation initiation: There are (at least) two sides to every story. Nat. Struct. Biol. 7:356–
Kozak, M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–
Bushell, M., Wood, W., Clemens, M. J., and Morley, S. J. 2000. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur. J. Biochem. 267:1083–
Das, S., Ghosh, R., and Maitra, U. 2001. Eukaryotic translation initiation factor 5 functions as a GTPase-
Lee, J. H., Choi, S. K., Roll-
Pestova, T. V., and Hellen, C. U. 2000. The structure and function of initiation factors in eukaryotic protein synthesis. Cell. Mol. Life Sci. 57:651–
Belova, L., Tenson, T., Xiong, L., McNicholas, P. M., and Mankin, A. S. 2001. A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit. Proc. Natl. Acad. Sci. U.S.A. 98:3726–
Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-
Porse, B. T., and Garrett, R. A. 1999. Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97:423–
Lord, M. J., Jolliffe, N. A., Marsden, C. J., Pateman, C. S., Smith, D. S., Spooner, R. A., Watson, P. D., and Roberts, L. M. 2003. Ricin: Mechanisms of toxicity. Toxicol. Rev. 22:53–
Akopian, D., Shen, K., Zhang, X., and Shan, S. 2013. Signal recognition particle: An essential protein-
Nyathi, Y., Wilkinson, B. M., and Pool, M. R. 2013. Co-
Janda, C. Y., Li, J., Oubridge, C., Hernández, H., Robinson, C. V., and Nagai, K. 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465:507–
Cross, B. C. S., Sinning, I., Luirink, J., and High, S. 2009. Delivering proteins for export from the cytosol. Nat. Rev. Mol. Cell. Biol. 10:255–
Shan, S., Schmid, S. L., and Zhang, X. 2009. Signal recognition particle (SRP) and SRP receptor: A new paradigm for multistate regulatory GTPases. Biochemistry 48:6696–
Johnson, A. E. 2009. The structural and functional coupling of two molecular machines, the ribosome and the translocon. J. Cell Biol. 185:765–
Pool, R. P. 2009. A transmembrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J. Cell Biol. 185:889–
Egea, P. F., Stroud, R. M., and Walter, P. 2005. Targeting proteins to membranes: Structure of the signal recognition particle. Curr. Opin. Struct. Biol. 15:213–
Halic, M., and Beckmann, R. 2005. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol.15:116–
Doudna, J. A., and Batey, R. T. 2004. Structural insights into the signal recognition particle. Annu. Rev. Biochem. 73:539–
Schnell, D. J., and Hebert, D. N. 2003. Protein translocons: Multifunctional mediators of protein translocation across membranes. Cell 112:491–