Chapter 35

Where to Start

Gennerich, A., and Vale, R. D. 2009. Walking the walk: How kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21:59–67.

Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467–480.

Vale, R. D., and Milligan, R. A. 2000. The way things move: Looking under the hood of molecular motor proteins. Science 288:88–95.

Vale, R. D. 1996. Switches, latches, and amplifiers: Common themes of G proteins and molecular motors. J. Cell Biol. 135:291–302.

Mehta, A. D., Rief, M., Spudich, J. A., Smith, D. A., and Simmons, R. M. 1999. Single-molecule biomechanics with optical methods. Science 283:1689–1695.

Schuster, S. C., and Khan, S. 1994. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 23:509–539.

Books

Howard, J. 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinauer.

Squire, J. M. 1986. Muscle Design, Diversity, and Disease. Benjamin Cummings.

B42

Pollack, G. H., and Sugi, H. (Eds.). 1984. Contractile Mechanisms in Muscle. Plenum.

Myosin and Actin

Lorenz, M., and Holmes, K. C. 2010. The actin-myosin interface. Proc. Natl. Acad. Sci. U.S.A. 107:12529–12534.

Yang, Y., Gourinath, S., Kovacs, M., Nyitray, L., Reutzel, R., Himmel, D. M., O’Neall-Hennessey, E., Reshetnikova, L., Szent-Györgyi, A. G., Brown, J. H., et al. 2007. Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564.

Himmel, D. M., Mui, S., O’Neall-Hennessey, E., Szent-Györgyi, A. G., and Cohen, C. 2009. The on-off switch in regulated myosins: Different triggers but related mechanisms. J. Mol. Biol. 394: 496–505.

Houdusse, A., Gaucher, J. F., Krementsova, E., Mui, S., Trybus, K. M., and Cohen, C. 2006. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features. Proc. Natl. Acad. Sci. U.S.A. 103:19326–19331.

Li, X. E., Holmes, K. C., Lehman, W., Jung, H., and Fischer, S. 2010. The shape and flexibility of tropomyosin coiled coils: Implications for actin filament assembly and regulation. J. Mol. Biol. 395: 327–339.

Fischer, S., Windshugel, B., Horak, D., Holmes, K. C., and Smith, J. C. 2005. Structural mechanism of the recovery stroke in the myosin molecular motor. Proc. Natl. Acad. Sci. U.S.A. 102:6873–6878.

Holmes, K. C., Angert, I., Kull, F. J., Jahn, W., and Schroder, R. R. 2003. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423–427.

Holmes, K. C., Schroder, R. R., Sweeney, H. L., and Houdusse, A. 2004. The structure of the rigor complex and its implications for the power stroke. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 1819–1828.

Purcell, T. J., Morris, C., Spudich, J. A., and Sweeney, H. L. 2002. Role of the lever arm in the processive stepping of myosin V. Proc. Natl. Acad. Sci. U.S.A. 99:14159–14164.

Purcell, T. J., Sweeney, H. L., and Spudich, J. A. 2005. A force-dependent state controls the coordination of processive myosin V. Proc. Natl. Acad. Sci. U.S.A. 102:13873–13878.

Holmes, K. C. 1997. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7:R112–R118.

Berg, J. S., Powell, B. C., and Cheney, R. E. 2001. A millennial myosin census. Mol. Biol. Cell 12:780–794.

Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Györgyi, A. G., and Cohen, C. 1999. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: A novel conformation of the myosin head. Cell 97:459–470.

Houdusse, A., Szent-Györgyi, A. G., and Cohen, C. 2000. Three conformational states of scallop myosin S1. Proc. Natl. Acad. Sci. U.S.A. 97:11238–11243.

Uyeda, T. Q., Abramson, P. D., and Spudich, J. A. 1996. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl. Acad. Sci. U.S.A. 93:4459–4464.

Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E. 1999. Myosin-V is a processive actin-based motor. Nature 400:590–593.

Otterbein, L. R., Graceffa, P., and Dominguez, R. 2001. The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711.

Holmes, K. C., Popp, D., Gebhard, W., and Kabsch, W. 1990. Atomic model of the actin filament. Nature 347:44–49.

Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C., and Lindberg, U. 1993. The structure of crystalline profilin-β-actin. Nature 365:810–816.

van den Ent, F., Amos, L. A., and Lowe, J. 2001. Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44.

Schutt, C. E., and Lindberg, U. 1998. Muscle contraction as a Markov process I: Energetics of the process. Acta Physiol. Scand. 163:307–323.

Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., and Spudich, J. A. 2000. Myosin-V stepping kinetics: A molecular model for processivity. Proc. Natl. Acad. Sci. U.S.A. 97:9482–9486.

Friedman, T. B., Sellers, J. R., and Avraham, K. B. 1999. Unconventional myosins and the genetics of hearing loss. Am. J. Med. Genet. 89:147–157.

Kinesin, Dynein, and Microtubules

Cho, C. and Vale, R. D. 2012. The mechanism of dynein motility: Insight from crystal structures of the motor domain. Biochim. Biophys. Acta 1823:182–191.

Yildiz, A., Tomishige, M., Gennerich, A., and Vale, R. D. 2008. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030–1041.

Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R. 2004. Kinesin walks hand-over-hand. Science 303:676–678.

Rogers, G. C., Rogers, S. L., Schwimmer, T. A., Ems-McClung, S. C., Walczak, C. E., Vale, R. D., Scholey, J. M., and Sharp, D. J. 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–370.

Vale, R. D., and Fletterick, R. J. 1997. The design plan of kinesin motors. Annu. Rev. Cell. Dev. Biol. 13:745–777.

Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., and Vale, R. D. 1996. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555.

Kikkawa, M., Sablin, E. P., Okada, Y., Yajima, H., Fletterick, R. J., and Hirokawa, N. 2001. Switch-based mechanism of kinesin motors. Nature 411:439–445.

Wade, R. H., and Kozielski, F. 2000. Structural links to kinesin directionality and movement. Nat. Struct. Biol. 7:456–460.

Yun, M., Zhang, X., Park, C. G., Park, H. W., and Endow, S. A. 2001. A structural pathway for activation of the kinesin motor ATPase. EMBO J. 20:2611–2618.

Kozielski, F., De Bonis, S., Burmeister, W. P., Cohen-Addad, C., and Wade, R. H. 1999. The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Struct. Fold. Des. 7:1407–1416.

Lowe, J., Li, H., Downing, K. H., and Nogales, E. 2001. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313:1045–1057.

Nogales, E., Downing, K. H., Amos, L. A., and Lowe, J. 1998. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5:451–458.

Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H. W., Terada, S., Nakata, T., Takei, Y., et al. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bb. Cell 105:587–597.

Asai, D. J., and Koonce, M. P. 2001. The dynein heavy chain: Structure, mechanics and evolution. Trends Cell Biol. 11:196–202.

Mocz, G., and Gibbons, I. R. 2001. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9:93–103.

Bacterial Motion and Chemotaxis

Baker, M. D., Wolanin, P. M., and Stock, J. B. 2006. Systems biology of bacterial chemotaxis. Curr. Opin. Microbiol. 9:187–192.

Wolanin, P. M., Baker, M. D., Francis, N. R., Thomas, D. R., DeRosier, D. J., and Stock, J. B. 2006. Self-assembly of receptor/signaling complexes in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 103:14313–14318.

Sowa, Y., Rowe, A. D., Leake, M. C., Yakushi, T., Homma, M., Ishijima, A., and Berry, R. M. 2005. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919.

B43

Berg, H. C. 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:491–501.

DeRosier, D. J. 1998. The turn of the screw: The bacterial flagellar motor. Cell 93:17–20.

Ryu, W. S., Berry, R. M., and Berg, H. C. 2000. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403:444–447.

Lloyd, S. A., Whitby, F. G., Blair, D. F., and Hill, C. P. 1999. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400:472–475.

Purcell, E. M. 1977. Life at low Reynolds number. Am. J. Physiol. 45:3–11.

Macnab, R. M., and Parkinson, J. S. 1991. Genetic analysis of the bacterial flagellum. Trends Genet. 7:196–200.

Historical Aspects

Huxley, H. E. 1965. The mechanism of muscular contraction. Sci. Am. 213(6):18–27.

Summers, K. E., and Gibbons, I. R. 1971. ATP-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. U.S.A. 68:3092–3096.

Macnab, R. M., and Koshland, D. E., Jr. 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 69:2509–2512.

Taylor, E. W. 2001. 1999 E. B. Wilson lecture: The cell as molecular machine. Mol. Biol. Cell 12:251–254.