Where to Start
Stroud, R. M. 1974. A family of protein-
Kraut, J. 1977. Serine proteases: Structure and mechanism of catalysis. Annu. Rev. Biochem. 46:331–
Lindskog, S. 1997. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74:1–
Jeltsch, A., Alves, J., Maass, G., and Pingoud, A. 1992. On the catalytic mechanism of EcoRI and EcoRV: A detailed proposal based on biochemical results, structural data and molecular modelling. FEBS Lett. 304:4–
Bauer, C. B., Holden, H. M., Thoden, J. B., Smith, R., and Rayment, I. 2000. X-
Lolis, E., and Petsko, G. A. 1990. Transition-
Fersht, A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Freeman and Company.
B8
Silverman, R. B. 2000. The Organic Chemistry of Enzyme-
Page, M., and Williams, A. 1997. Organic and Bio-
Fastrez, J., and Fersht, A. R. 1973. Demonstration of the acyl-
Sigler, P. B., Blow, D. M., Matthews, B. W., and Henderson, R. 1968. Structure of crystalline-
Kossiakoff, A. A., and Spencer, S. A. 1981. Direct determination of the protonation states of aspartic acid-
Carter, P., and Wells, J. A. 1988. Dissecting the catalytic triad of a serine protease. Nature 332:564–
Carter, P., and Wells, J. A. 1990. Functional interaction among catalytic residues in subtilisin BPN′. Proteins 7:335–
Koepke, J., Ermler, U., Warkentin, E., Wenzl, G., and Flecker, P. 2000. Crystal structure of cancer chemopreventive Bowman-
Gaboriaud, C., Rossi, V., Bally, I., Arlaud, G. J., and Fontecilla-
Bachovchin D. A., and Cravatt B. F. 2012. The pharmacological landscape and therapeutic potential of serine hydrolases. Nature Reviews Drug Discovery. 11:52–
Vega, S., Kang, L. W., Velazquez-
Kamphuis, I. G., Kalk, K. H., Swarte, M. B., and Drenth, J. 1984. Structure of papain refined at 1.65 Å resolution. J. Mol. Biol. 179:233–
Kamphuis, I. G., Drenth, J., and Baker, E. N. 1985. Thiol proteases: Comparative studies based on the high-
Sivaraman, J., Nagler, D. K., Zhang, R., Menard, R., and Cygler, M. 2000. Crystal structure of human procathepsin X: A cysteine protease with the proregion covalently linked to the active site cysteine. J. Mol. Biol. 295:939–
Davies, D. R. 1990. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 19:189–
Dorsey, B. D., Levin, R. B., McDaniel, S. L., Vacca, J. P., Guare, J. P., Darke, P. L., Zugay, J. A., Emini, E. A., Schleif, W. A., Quintero, J. C., et al. 1994. L-
Chen, Z., Li, Y., Chen, E., Hall, D. L., Darke, P. L., Culberson, C., Shafer, J. A., and Kuo, L. C. 1994. Crystal structure at 1.9-
Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., et al. 1992. The α/β hydrolase fold. Protein Eng. 5:197–
Lindskog, S., and Coleman, J. E. 1973. The catalytic mechanism of carbonic anhydrase. Proc. Natl. Acad. Sci. U.S.A. 70:2505–
Kannan, K. K., Notstrand, B., Fridborg, K., Lovgren, S., Ohlsson, A., and Petef, M. 1975. Crystal structure of human erythrocyte carbonic anhydrase B: Three-
Boriack-
Wooley, P. 1975. Models for metal ion function in carbonic anhydrase. Nature 258:677–
Jonsson, B. H., Steiner, H., and Lindskog, S. 1976. Participation of buffer in the catalytic mechanism of carbonic anhydrase. FEBS Lett. 64:310–
Sly, W. S., and Hu, P. Y. 1995. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 64:375–
Maren, T. H. 1988. The kinetics of HCO3– synthesis related to fluid secretion, pH control, and CO2 elimination. Annu. Rev. Physiol. 50:695–
Roy, A., and Taraphder, S. 2010. Role of protein motions on proton transfer pathways in human carbonic anhydrase II. Biochim. Biophys. Acta 1804:352–
Selvaraj, S., Kono, H., and Sarai, A. 2002. Specificity of protein-
Winkler, F. K., Banner, D. W., Oefner, C., Tsernoglou, D., Brown, R. S., Heathman, S. P., Bryan, R. K., Martin, P. D., Petratos, K., and Wilson, K. S. 1993. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-
Kostrewa, D., and Winkler, F. K. 1995. Mg2+ binding to the active site of EcoRV endonuclease: A crystallographic study of complexes with substrate and product DNA at 2 Å resolution. Biochemistry 34:683–
Athanasiadis, A., Vlassi, M., Kotsifaki, D., Tucker, P. A., Wilson, K. S., and Kokkinidis, M. 1994. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV. Nat. Struct. Biol. 1:469–
Sam, M. D., and Perona, J. J. 1999. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease. Biochemistry 38:6576–
Jeltsch, A., and Pingoud, A. 1996. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-
Advani S., Mishra P., Dubey S., and Thakur S. 2010. Categoric prediction of metal ion mechanisms in the active sites of 17 select type II restriction endonucleases. Biochem. Biophys. Res. Commun. 402:177–
Grigorenko, B. L., Rogov, A. V., Topol, I. A., Burt, S. K., Martinez, H. M., and Nemukhin, A. V. 2007. Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling. Proc. Natl. Acad. Sci. U.S.A. 104:7057–
Gulick, A. M., Bauer, C. B., Thoden, J. B., and Rayment, I. 1997. X-
Kovacs, M., Malnasi-
B9
Kuhlman, P. A., and Bagshaw, C. R. 1998. ATPase kinetics of the Dictyostelium discoideum myosin II motor domain. J. Muscle Res. Cell Motil. 19:491–
Smith, C. A., and Rayment, I. 1996. X-
Yildiz A., Forkey J. N., McKinney S. A., Ha T., Goldman Y. E., and Selvin P. R. 2003. Myosin V walks hand-