Chapter 10
Where to Start
Kyriakis, J. M. 2014. In the beginning, there was protein phosphorylation. J. Biol. Chem. 289:9460—
Changeux, J.-P. 2011. 50th anniversary of the word ‘‘Allosteric.” Protein Sci. 20:1119–
Kantrowitz, E. R., and Lipscomb, W. N. 1990. Escherichia coli aspartate transcarbamoylase: The molecular basis for a concerted allosteric transition. Trends Biochem. Sci. 15:53–
Schachman, H. K. 1988. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem. 263:18583–
Neurath, H. 1989. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14:268–
Bode, W., and Huber, R. 1992. Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204: 433–
Changeux, J.-P. 2012. Allostery and the Monod-
Peterson, A. W., Cockrell, G. M., and Kantrowitz, E. R. 2012. A second allosteric site in Escherichia coli aspartate transcarbamoylase. Biochemistry 51:4776−4778.
Rabinowitz, J. D., Hsiao, J. J., Gryncel, K. R., Kantrowitz, E. R., Feng, X.-J., Li, G., and Rabitz H. 2008. Dissecting enzyme regulation by multiple allosteric effectors: Nucleotide regulation of aspartate transcarbamoylase. Biochemistry 47:5881–
West, J. M., Tsuruta, H., and Kantrowitz, E. R. 2004. A fluorescent probe-
Endrizzi, J. A., Beernink, P. T., Alber, T., and Schachman, H. K. 2000. Binding of bisubstrate analog promotes large structural changes in the unregulated catalytic trimer of aspartate transcarbamoylase: Implications for allosteric regulation. Proc. Natl. Acad. Sci. U.S.A. 97:5077–
Beernink, P. T., Endrizzi, J. A., Alber, T., and Schachman, H. K. 1999. Assessment of the allosteric mechanism of aspartate transcarbamoylase based on the crystalline structure of the unregulated catalytic subunit. Proc. Natl. Acad. Sci. U.S.A. 96:5388–
Wales, M. E., Madison, L. L., Glaser, S. S., and Wild, J. R. 1999. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamoylase. J. Mol. Biol. 294:1387–
Newell, J. O., Markby, D. W., and Schachman, H. K. 1989. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-
Stevens, R. C., Gouaux, J. E., and Lipscomb, W. N. 1990. Structural consequences of effector binding to the T state of aspartate carbamoyl-
Gouaux, J. E., and Lipscomb, W. N. 1990. Crystal structures of phosphonoacetamide ligated T and phosphonoacetamide and malonate ligated R states of aspartate carbamoyltransferase at 2.8-
Labedan, B., Boyen, A., Baetens, M., Charlier, D., Chen, P., Cunin, R., Durbeco, V., Glansdorff, N., Herve, G., Legrain, C., et al. 1999. The evolutionary history of carbamoyltransferases: A complex set of paralogous genes was already present in the last universal common ancestor. J. Mol. Evol. 49:461–
Endicott, J. A., Noble, M. E. M., and Johnson, L. N. 2012. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81:587–
Tarrant, M. K., and Cole, P. A. 2009. The chemical biology of protein phosphorylation Annu. Rev. Biochem. 78:797–
Guarente, L. 2011. The logic linking protein acetylation and metabolism. Cell Metab. 14:151–
Guan, K-
Johnson, L. N., and Barford, D. 1993. The effects of phosphorylation on the structure and function of proteins. Annu. Rev. Biophys. Biomol. Struct. 22:199–
Barford, D., Das, A. K., and Egloff, M. P. 1998. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27:133–
Taylor, S. S., Ilouz, R., Zhang, P., and Kornev, A. P. 2012. Assembly of allosteric macromolecular switches: Lessons from PKA. Nature Rev. Mol. Cell Biol. 13:646–
Zhang, P., Smith-
Taylor, S. S., and Kornev, A. P. 2011. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36:65–
Pearlman, S. M., Serber, Z., and Ferrell Jr., J. E. 2011. A mechanism for the evolution of phosphorylation sites. Cell 147:934–
Knighton, D. R., Zheng, J. H., TenEyck, L., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. 1991. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-
Artenstein, A. W., and Opal, S. M. 2011. Proprotein convertases in health and disease. New Engl. J. Med. 65:2507–
Neurath, H. 1986. The versatility of proteolytic enzymes. J. Cell. Biochem. 32:35–
Bode, W., and Huber, R. 1986. Crystal structure of pancreatic serine endopeptidases. In Molecular and Cellular Basis of Digestion (pp. 213–
James, M. N. 1991. Refined structure of porcine pepsinogen at 1.8 Å resolution. J. Mol. Biol. 219:671–
Gooptu, B., and Lomas, D. A. 2009. Conformational Pathology of the Serpins: Themes, Variations, and Therapeutic Strategies. Annu. Rev. Biochem. 78:147–
Carrell, R., and Travis, J. 1985. α1-Antitrypsin and the serpins: Variation and countervariation. Trends Biochem. Sci. 10:20–
Carp, H., Miller, F., Hoidal, J. R., and Janoff, A. 1982. Potential mechanism of emphysema: α1-Proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc. Natl. Acad. Sci. U.S.A. 79:2041–
B10
Owen, M. C., Brennan, S. O., Lewis, J. H., and Carrell, R. W. 1983. Mutation of antitrypsin to antithrombin. New Engl. J. Med. 309: 694–
Travis, J., and Salvesen, G. S. 1983. Human plasma proteinase inhibitors. Annu. Rev. Biochem. 52:655–
Kollman, J. M., Pandi, L., Sawaya, M. R., Riley, M., and Doolittle, R. F. 2009. Crystal structure of human fibrinogen. Biochemistry 48: 3877–
Furie, B., and Furie, B. C. 2008. Mechanisms of thrombus formation. New Engl. J. Med. 359:938–
Orfeo, T., Brufatto, N., Nesheim, M. E., Xu, H., Butenas, S., and Mann, K. G. 2004. The factor V activation paradox. J. Biol. Chem. 279:19580–
Mann, K. G. 2003. Thrombin formation. Chest 124:4S–
Rose, T., and Di Cera, E. 2002. Three-
Krem, M. M., and Di Cera, E. 2002. Evolution of cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 27:67–
Fuentes-
Lawn, R. M., and Vehar, G. A. 1986. The molecular genetics of hemophilia. Sci. Am. 254(3):48–