After completing this exercise, you should be able to:
Genetics is the science of heredity. In genetics we study how different characters are inherited by the new generation from parents. Gregor Mendel is regarded as the father of genetics. He started his work on sweet pea plants in the 1850s and laid the foundation for the modern genetics studies. Before we proceed further and learn to solve genetics problems, please review the definitions of the following terms: genome, genes, genotype, phenotype, allele, trait, homozygous, heterozygous, homozygous, dominant, recessive.
Please complete the pre-lab activity to define various above mentioned terms.
Monohybrid Cross and Review Websites
In monohybrid crosses, inheritance of only one trait is studied.
Always write down the phenotype and genotype in your Punnett square. The dominant phenotype is designated with a capital letter and the recessive phenotype is given the lowercase letter. Understand that genotypes are always diploid (Ex. AA) while gametes are haploid (Ex. A).
Example Cross: Monohybrid cross with complete dominance
Yellow plants (Y) are dominant over white plants (y).
You cross a heterozygous yellow plant (female) with a white male. Use a Punnett square to determine the expected genotypic and phenotypic ratios for the offspring.
Yellow plant genotype: Yy White plant genotype: yy
Yellow plant gametes: Y, y and White plant gametes: y, y
(Always put a comma between gametes as they represent two independent entities.)
Genotypic ratio: 1Yy:1yy (Remember to always reduce, 2Yy:2yy reduces to 1:1 so write that down.)
Phenotypic ratio: 1 yellow:1 white.
Example Cross: Monohybrid cross with incomplete dominance
Red flowers (R) are dominant over white flowers (r). You cross a heterozygous plant (female) with a white male. Use a Punnett square to determine the expected genotypic and phenotypic ratios for the offspring. (Use the table above to figure out homo- and heterozygous.)
Plant genotype: Rr White plant genotype: rr
Plant gametes: R, r (Always put a comma between gametes.)
White plant gametes: r, r
Write down the phenotypes as you do the problem.
Punnett Square |
r | r |
---|---|---|
R | Rr pink |
Rr pink |
r | rr white |
rr white |
Genotypic ratio: 1 Rr: 1rr Phenotypic ratio: 1 pink : 1 white
Review Websites
http://wps.prenhall.com/wps/media/objects/1552/1589799/web_tut/20_02/20_02_01a.swf
http://www.zerobio.com/drag_gr11/mono.htm
Tall plant genotype: MKtY3dLHDp0= | Short plant genotype: pauUyCFTrfs= |
Tall plant gametes: YD1idNhHFKjDbeTxDxftbmBr55M= | Short plant gametes: jzSU6OlSFSYcRRmYnem3vg6Lhjbutx3y |
(Please write all genotypes in the box.)
Punnett Square | cohH9LxhYQ0= | xCTKwaEWzLA= |
xCTKwaEWzLA= | MKtY3dLHDp0= | pauUyCFTrfs= |
xCTKwaEWzLA= | MKtY3dLHDp0= | pauUyCFTrfs= |
Genotypic ratio: D0HVkv8VCbSIB/kTOz7LZBtbI0324px3/Dyniq9p3fI=
Phenotypic ratio: wbqvEXvxYIE9LJwe9afk5GyuM8ttGcI9ta/5Gq+8fW9Pt3flYRBYqOuMf+24UJRKoxSgRRglz10mzcvwLhks2g==
Male plant’s genotype: GlYi3aORhDg= | Female plant’s genotype: x0aNjfJQ2RU= |
Male plant’s gametes: z5Fwj5CGQ8Iw/vhzpWm5KZBgrjA= | Female plant’s gametes: PWdQCDYevcCZj2DCcszeY9pqEpo= |
Punnett Square | wLK68QTTen4= | wLK68QTTen4= |
wLK68QTTen4= | GlYi3aORhDg= | GlYi3aORhDg= |
iQK8Y4mN8UI= | HmOKZEfpL8RHVi+e | HmOKZEfpL8RHVi+e |
Genotypic ratio: Psqh0GGhHKa2qIyqe4ieOpPvf9mNo+o+Nsine5rGpZyNLYYu2XE1oDCN8047MeyGhKOBCaaQa06FRSkz2ceJdt+XysU=
Phenotypic ratio: gL1peRWkHhUmHKfbGC+PEaMlfI31NzaT
Purple pea plant’s genotype: UqEPSZ7yjbk= | White pea plant’s genotype: Q4A9OE+SM6w= |
Purple pea plant’s gametes: q6htXAg2qbpc7AF8JFdNbsDgqnw= | White pea plant’s gametes: iDGISOuy2xqiCwRcfr1HeSCiPGw= |
Punnett Square | VYnuoKiyNdc= | LGXuUCxOy3E= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
Genotypic ratio: QvKRIp1kv+6al5GzkN5TXA0u8+Q4OQ42
Phenotypic ratio: 9YvjKIKBpwiPpePxDuK36Kr5eS1GRFxODAqcZ7uoNm06kXqsV8TDus1wHcRl/RO8gLWQb817sKK2X7EzNXRNNk3GCFdpdhjm
Male pea plant’s genotype : MKtY3dLHDp0= | Female pea plant’s genotype: MKtY3dLHDp0= |
Male pea plant’s gametes : yaLadhbT5QkN9sH6ho+R+sBqGzI= | Female pea plant’s gametes: yaLadhbT5QkN9sH6ho+R+sBqGzI= |
Punnett Square | cohH9LxhYQ0= | xCTKwaEWzLA= |
cohH9LxhYQ0= | jJ0JOpn+l3o= | MKtY3dLHDp0= |
xCTKwaEWzLA= | MKtY3dLHDp0= | pauUyCFTrfs= |
Genotypic ratio: DyeCFHpQ+ZJ5fxNkPOLgit8bnDQ=
Phenotypic ratio: EJ3ONRzJOvIwvInWZkixaJhNnJBgSTlLMWM8vqpF93fYT8z6igaxYe6WDzQ1jrVf5dePj6G6fYM=
Unknown plant, list the 3 possible genotypes: 8xc9dWIhOJI=UqEPSZ7yjbk=Q4A9OE+SM6w= (Use a different one for each cross; this would be “Mom” and there are 3 possible genotoypes.)
Heterozygous purple pea plant’s genotypes: +Z9nl6ytqMk= (Use this in all the crosses-this would be “Dad,” he stays the same.)
Punnett Square | VYnuoKiyNdc= | LGXuUCxOy3E= |
VYnuoKiyNdc= | 8xc9dWIhOJI= | UqEPSZ7yjbk= |
VYnuoKiyNdc= | 8xc9dWIhOJI= | UqEPSZ7yjbk= |
Punnett Square | VYnuoKiyNdc= | LGXuUCxOy3E= |
VYnuoKiyNdc= | 8xc9dWIhOJI= | UqEPSZ7yjbk= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
Punnett Square | VYnuoKiyNdc= | LGXuUCxOy3E= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
Which genotype will only give you purple flowers when crossed with the heterozygote?
LLH0kYS9lr05iafL4chWI8r+6qMHEk76rpuMrcg59aAXnsGJsa3aHkpgWFa0YdPIrWfd3oItgDRP0Avyj6ZD5P4EkpW/UWnlCJmKrkCZRZ3AqCk7sSw35Ruvd5FQOfC7Lonen9DxUh64vlCQy132J4BbUY/AhPSH78q/Qpr5asr2WRSotUW2FIiCsXoUvFnHBqiWir5+b0dZ51+ugCYLISTsTe1blgPw08lKlDO3yXuIVJFAsj81AJiHtUynAMInlW7kKxfNsrGscNQVh50EJkPm7mS99WGtTkynbFuaoIyA0LP8XXovYQ==
Purple pea plant’s genotype: UqEPSZ7yjbk=
The other purple pea plant’s genotype: UqEPSZ7yjbk=
Purple pea plant’s gametes: q6htXAg2qbpc7AF8JFdNbsDgqnw=
The other purple pea plant’s gametes: q6htXAg2qbpc7AF8JFdNbsDgqnw=
Punnett Square | VYnuoKiyNdc= | LGXuUCxOy3E= |
VYnuoKiyNdc= | 8xc9dWIhOJI= | UqEPSZ7yjbk= |
LGXuUCxOy3E= | UqEPSZ7yjbk= | Q4A9OE+SM6w= |
Probability that any of their offspring will have purple flowers: XqPzZf5H/p4= % and white flowers Bqf/EtUReUc= %
Parent tall plant’s possible genotypes: h0xgQMrb07/Jj7ifcTBDLT6jG54AyQJVL/7wGUCOeDoQPiCigZ9xxeqXvjmPgWM/CW1wP5ZNuuw=
Parent short plant’s genotype: pauUyCFTrfs=
Offspring genotype(s):
Punnett Square | cohH9LxhYQ0= | cohH9LxhYQ0= |
xCTKwaEWzLA= | MKtY3dLHDp0= | MKtY3dLHDp0= |
xCTKwaEWzLA= | MKtY3dLHDp0= | MKtY3dLHDp0= |
Or
Punnett Square | cohH9LxhYQ0= | xCTKwaEWzLA= |
xCTKwaEWzLA= | MKtY3dLHDp0= | pauUyCFTrfs= |
xCTKwaEWzLA= | MKtY3dLHDp0= | pauUyCFTrfs= |
Which cross gave you the 1:1 ratio of tall to short? Give me the genotype of the parent and offspring of that cross. You have just figured out the genotype of the unknown parent.
Genotype of Tall Parent: MKtY3dLHDp0= Genotypes of offspring: naKNSkvDSy1krFWK8lsNMcDpVfUJ7kLL3Xs5jg==
Dihybrid Problems
In dihybrid crosses inheritance of two traits is studied. These two traits under the study are assumed to be independently assorted.
Male parent genotype: zkpImUGtUA5lH84+ Female parent genotype: zkpImUGtUA5lH84+
Male gametes: WEWL+SY5t+DDsOiNS3m65kI3gn9wtg66UM2ODHUQhpI= Female gametes: WEWL+SY5t+DDsOiNS3m65kI3gn9wtg66UM2ODHUQhpI=
Punnett square: Write the genotype and phenotype in each square or points will be taken off. Note: Please do not use commas in your response, use a space instead.
SB | Sb | sB | sb | |
SB | BF73ca5SXGog2ws3a74Do0T556MqfolD | kGJwoDBBHBtFDBX+S7XY04AaUlOOfkyI | RXFjUwoBCScY8PCAPD/UD6K3Errj3Zrq | OcmjSwwTDnB52NKXf/MfpZmoZBhG0/oy |
Sb | kGJwoDBBHBtFDBX+S7XY04AaUlOOfkyI | tCgOWDac6Z5hm2MA0npWpkXWta5Bmyol | OcmjSwwTDnB52NKXf/MfpZmoZBhG0/oy | suGd8rZpZFouSYM3H+47kVUWPF25LYx9 |
sB | RXFjUwoBCScY8PCAPD/UD6K3Errj3Zrq | OcmjSwwTDnB52NKXf/MfpZmoZBhG0/oy | zcPpPslTj0iFdFuH6sbpqbIBNCE8Tg/l | tG4783+HdQbXKbUe+QwyPJvRGJsrUZsI |
sb | OcmjSwwTDnB52NKXf/MfpZmoZBhG0/oy | suGd8rZpZFouSYM3H+47kVUWPF25LYx9 | tG4783+HdQbXKbUe+QwyPJvRGJsrUZsI | 8NxXfx4frqeJYsbzERRXkTVPEJRtqy9r |
Phenotype ratio of offspring: RcjZ4T+EHkGq71zENNXgYkmXF6g= : M5MBbxWpPHuYAfb1OmTaIs2aeuc= : 5zU2rDsYcWX10byN1rOvrIm8kJ4= : 3Qs6HLP80WlTHzi2/BP4Ig== (indicate colors of coat and eyes)
You don’t need to do the gentotypic ratio.
Male parent genotype: 3tnDpA1YSXft6S5E Female parent genotype: 3tnDpA1YSXft6S5E
Male gametes : 8LP483F5yrEDbMyMVBplH8fWdGeCtxNPt7qTYfxFEk0= Female gametes : FP4hb5GwsrHFZYiYmZobbqsqSEt1XQ4fE+/d4FmRCUY4qqik
Punnett square: Write the genotype and phenotype in each square or points will be taken off. Note: Please do not use commas in your response, use a space instead.
BE | Be | bE | be | |
BE | pTPWHlmVd3OjwM5H7cWy6w== | 8giqOqyr2Tm3dUjslI7pDw== | sT8mWEL5AsfqfKzRe6p1/w== | pz71YF+Ge2MuIzryU4yYZg== |
Be | 8giqOqyr2Tm3dUjslI7pDw== | 8qJqQiF7ZohBPMZEMNHHbzaI/dg= | nS1VSbyRmD8U0ijyc+a56w== | g0PQZa6j1aTKA4nkR04GPG9XTLY= |
bE | sT8mWEL5AsfqfKzRe6p1/w== | pz71YF+Ge2MuIzryU4yYZg== | 2UoGqayxCQP71nuDzRHfmg== | zYlmEbxRfjo79wxv9k7Ncg== |
be | pz71YF+Ge2MuIzryU4yYZg== | g0PQZa6j1aTKA4nkR04GPG9XTLY= | zYlmEbxRfjo79wxv9k7Ncg== | 88cKoyeDJFkyNm0WgXpJC9PZi2U= |
Phenotype ratio of offspring: IB1WtuOo1r8jwJmY : 7uIrx7KImRKd/O3Y : /hlgQVp8kHav3oX+
(Indicate colors of the coat.)
Male parent genotype: 43OAi7/7mUSlzOgq | Female parent genotype: 016N3t0pafLW39VX |
Male gametes: 54fJEnVfQjp+XSJ8+nWKxb2Eo6LSAa3meybBT65uVGAk6AuZMSoyPQgOtYKrqw+f | Female gametes: wFFwY60qsRlPVbw1sgYLpMkpiXPdeLZuMCrKybw3zXg= |
Punnett square: Write the genotype and phenotype or points will be taken off. Note: Please do not use commas in your response, use a space instead.
Punnett Square | RbTXOZVVU8Q= | RbTXOZVVU8Q= | su7/uI8b+Vk= | su7/uI8b+Vk= |
RbTXOZVVU8Q= | JxdJgnsILaGVsnx3kf/nrrmA93k= | JxdJgnsILaGVsnx3kf/nrrmA93k= | ghJ0u/ojVATd8lc5zgETG3j1Na0= | ghJ0u/ojVATd8lc5zgETG3j1Na0= |
su7/uI8b+Vk= | ghJ0u/ojVATd8lc5zgETG3j1Na0= | ghJ0u/ojVATd8lc5zgETG3j1Na0= | 855BpgUVUxS7geD/ZxXjb9YyzvdTYVXJ | 855BpgUVUxS7geD/ZxXjb9YyzvdTYVXJ |
5F8YocYzGg8= | 5VjLcoDznnQ+cuVVzCUpCabDqVw= | 5VjLcoDznnQ+cuVVzCUpCabDqVw= | vBBt0PulFgaEYrwZ9nJ22g/kvFE= | vBBt0PulFgaEYrwZ9nJ22g/kvFE= |
su7/uI8b+Vk= | ghJ0u/ojVATd8lc5zgETG3j1Na0= | ghJ0u/ojVATd8lc5zgETG3j1Na0= | 855BpgUVUxS7geD/ZxXjb9YyzvdTYVXJ | 855BpgUVUxS7geD/ZxXjb9YyzvdTYVXJ |
Phenotype ratio of offspring:IG4Thy/TGJ7uaqglPRipLdjzURhgisfgoxU6UNjpNikYt7T5i5xHIMIreZOxzIesR47OHyQN/QR3Fxko
Sex Linked Inheritance
In humans, we have 22 pairs (44) of regular chromosomes also known as autosomes and a pair (2) of sex- chromosomes. Sex chromosomes determine the sex of individuals. In humans the two sex chromosomes are called X and Y. If you have XX then you are a girl; but if you have XY then you are a boy!
Compared to the X chromosome, the Y chromosome is smaller in size (review the human karyotype in your textbook). The Y chromosome carries genes for the development of tests, whereas genes present on the X chromosome really do not help in sex determination. The X chromosome carries many housekeeping genes that are essential for both sexes. Thus when we talk about sex-linked genes we are talking about genes present on the sex chromosomes.
Since males carry only one copy of X chromosome, a recessive X-linked trait will influence the phenotype more often in males.
Several sex-linked and recessive disorders in humans include hemophilia, red-green color blindness, and Duchenne muscular dystrophy syndrome.
Please solve the following problems to understand sex-linked inheritance in humans.
Note: This a monohybrid cross but writing the alleles for sex-linked traits is different than what you did above. Now you will need to show that the allele is linked to the X chromosome by writing it as XH and Xh instead of simply H and h.
a. Give the genotypes for:
1) Angelina with normal blood clotting whose father had hemophilia and
2) Brad whose father had hemophilia.
3) Please cross Angelina and Brad (answer box does not accept superscripts, please use normal letters).
Angelina’s genotype: W92BeTVbciRU+YX3 Brad’s genotype: n2+o0F7lLW2/MdIq
Angelina’s gametes: iFErY7VIaYI3vXbZgtgTC3JVG9DZW5kc Brad’s gametes: 1+jCSG1ea6V5Wi06rfiFT9TkOUs=
3X30mFclqUc= | 6qghPWgF4n8= | |
3X30mFclqUc= | kUUhYtGjBIAlRS1RVWBxJw== | hVkjC5U0yS+iQh5DsUUQpg== |
ymBRa/qbono= | Xpn3r1ZBB6KL7xEX1rXfQg== | VTHBn5RkqpNU55eY2/qWRw== |
Probability of any of the children having hemophilia?
c. If this couple has a daughter, what is the probability that the daughter will be a carrier (carries a copy of the normal gene and hemophilia gene) of the hemophilia trait? What is the probability a daughter would have hemophilia?
Daughter is a carrier: fwIPnBkWdu4=% Daughters with hemophilia: 1Wh3cvJ2xF4=%
d. If this couple has a son, what is the probability he will have hemophilia?
Son with hemophilia: r8hMA0XFVp8=%
Genotypes for Meg and Mike are:
(Answer box does not accept superscripts, please use normal letters.)
Meg's gametes: 3zLGxEDz2LjDxY+oxawohfdXjPZvoguLImj5UvUT6NE= Mike's gametes: 703EZt3Yaj0wd3PlRpMEEiAAvkcx/mb6jud2NoarWB4=
4r5skkJg05Y= | 6qghPWgF4n8= | |
4r5skkJg05Y= | +n4DqaGAZwF6OotR | Y11YqbQl2hA4RNoO |
4r5skkJg05Y= | +n4DqaGAZwF6OotR | Y11YqbQl2hA4RNoO |
Crosses Involving Blood Types (Codominance)
In humans the blood type is regulated by three alleles (A, B, and O). We observe four blood types namely: A, B, AB, and O in society. These 4 phenotypes arise from more than 4 genotypic combinations. Please look carefully the table below to understand this concept.
Blood type (phenotype) | Genotype |
A | AA or AO |
B | BB or BO |
AB | AB |
O | OO |
Please solve the following problems related to human blood typing.
Mr. Brown: Type A | Mr. Green: Type AB |
Mrs. Brown: Type O | Mrs. Green: Type O |
Baby #1: Type A | Baby #2 Type O |
Complete the Punnett square for Mr. and Mrs. Green to determine whether the families received the right babies.
ZaKPZXOgTsA= | gdlTRjBwKg4= | |
wbVgtaGvv4Y= | dZAgRElcS3k= | qAn9Vg2gbR8= |
wbVgtaGvv4Y= | dZAgRElcS3k= | qAn9Vg2gbR8= |