Find the curvature of r(t) = <$a sin t, cos 3t, $bt> at t = (π / 3) and t = (π / 2).
Recall the formula for the curvature of a regular parametrization, r(t).
Thus we will need to find r'(t) and r''(t).
Find r'(t).
r'(t) = <nc1ItEz0kR4=cos t, -3 sin 3t, iSba6t70dtA=>
Find r''(t).
r''(t) = <IHLqJALES1Y=sin t, qnmvdj7HGaQ= cos 3t, 0>
Find the cross product r'(t) × r''(t). Let the tables below represent the 3 x 3 matrix A and the 2 x 2 matrices B, C, and D, in that order.
i | j | k |
$a cos t | -3 sin 3t | $b |
-$a sin t | -9 cos 3t | 0 |
-3 sin 3t | $b |
-9 cos 3t | 0 |
$a cos t | $b |
-$a sin t | 0 |
$a cos t | -3 sin 3t |
-$a sin t | -9 cos 3t |
TABLE
r'(t) × r''(t) = det(A) = det(B)i - det(C)j + det(D)k
= (SFgqQUkJGdg= cos 3t)i + (U2GIbglD1oM= sin t)j + (8SMCMW9N2Ew= cos t cos 3t - or6dmYWrEbA= sin t sin 3t)k
Evaluate r'(t) and r'(t) × r''(t) at t = (π / 3) and t = (π / 2). Round your answers to five decimal places.
r'(π / 3) = <$g, 0, $b>
r'(π / 3) × r''(π / 3) = <YWSdEbNFjeo=, zBNzILz/DvM=√3, zDsgB75cNfg=>
r'(π / 2) = <0, 607M7xmPORU=, iSba6t70dtA=>
r'(π / 2) × r''(π / 2) = <0, iXKaZpK/a+Q=, or6dmYWrEbA=>
Evaluate the magnitudes ||r'(t)|| and ||r'(t) × r''(t)|| at t = (π / 3) and t = (π / 2).
||r'(π / 3|| = √(bEz/iYnXpnk=)
||r'(π / 3) × r''(π / 3)|| = √(5VKs1keauzU=)
||r'(π / 2)|| = √(Q2IgEMvK+Uo=)
||r'(π / 2) × r''(π / 2)|| = √(xf1an8qan6o=)
Compute the curvature, κ(t), at t = (π / 3) and t = (π / 2). Round your answers to five decimal places.
κ(π / 3) = (||r'(π / 3) × r''(π / 3)|| / ||r'(π / 3)||3)
= (√$k)/(√$j)3
≈ S66BSo5Vlp0=
κ(π / 2) = (||r'(π / 2) × r''(π / 2)|| / ||r'(π / 2)||3)
= (√$m)/(√$l)3
≈ fhf0phNsVCo=