Find the curvature of r(t) = <6 sin t, cos 3t, 7t> at t = (π / 3) and t = (π / 2).
Recall the formula for the curvature of a regular parametrization, r(t).
Thus we will need to find r'(t) and r''(t).
Find r'(t).
r'(t) = <cos t, -3 sin 3t, >
Find r''(t).
r''(t) = <sin t, cos 3t, 0>
Find the cross product r'(t) × r''(t). Let the tables below represent the 3 x 3 matrix A and the 2 x 2 matrices B, C, and D, in that order.
i | j | k |
6 cos t | -3 sin 3t | 7 |
-6 sin t | -9 cos 3t | 0 |
-3 sin 3t | 7 |
-9 cos 3t | 0 |
6 cos t | 7 |
-6 sin t | 0 |
6 cos t | -3 sin 3t |
-6 sin t | -9 cos 3t |
TABLE
r'(t) × r''(t) = det(A) = det(B)i - det(C)j + det(D)k
= ( cos 3t)i + ( sin t)j + ( cos t cos 3t - sin t sin 3t)k
Evaluate r'(t) and r'(t) × r''(t) at t = (π / 3) and t = (π / 2). Round your answers to five decimal places.
r'(π / 3) = <3, 0, 7>
r'(π / 3) × r''(π / 3) = <, √3, >
r'(π / 2) = <0, , >
r'(π / 2) × r''(π / 2) = <0, , >
Evaluate the magnitudes ||r'(t)|| and ||r'(t) × r''(t)|| at t = (π / 3) and t = (π / 2).
||r'(π / 3|| = √()
||r'(π / 3) × r''(π / 3)|| = √()
||r'(π / 2)|| = √()
||r'(π / 2) × r''(π / 2)|| = √()
Compute the curvature, κ(t), at t = (π / 3) and t = (π / 2). Round your answers to five decimal places.
κ(π / 3) = (||r'(π / 3) × r''(π / 3)|| / ||r'(π / 3)||3)
= (√6021)/(√58)3
≈
κ(π / 2) = (||r'(π / 2) × r''(π / 2)|| / ||r'(π / 2)||3)
= (√2088)/(√58)3
≈