Find the normal vectors to r(t) = <3t, cos t> at t = (π / 4) and t = (3π / 4).
Recall the definition of unit tangent vector and normal vector.
The unit tangent vector is T(t) = r'(t) / ||r'(t)||.
The unit normal vector to r(t) is
A. |
B. |
C. |
D. |
Find r'(t).
r'(t) = <, -sin t>
r'(t) =
Find the magnitude ||r'(t)||.
||r'(t)|| = √( + sin2t).
Thus we have the unit tangent vector for r(t).
T(t) = r'(t) / ||r'(t)||
= (1/√( + sin2t))<, -sin t>
In order to find the normal vector, we need to compute T'(t).
Find T'(t) using the product rule.
T'(t) = (d / dt)((1/√( + sin2t))<, -sin t>)
= (1/√( + sin2t))(d / dt)<, -sin t> + <, -sin t>(d / dt)(1/√( + sin2t))
(d / dt)<3, -sin t> = <, -cos t>
(d / dt)(1/√(9 + sin2t)) = sin t cos t /(2( + sin2t)3/2)
Thus we have the normal vector for r(t).
T'(t) = (1/√(9 + sin2t))(d / dt)<3, -sin t> + (d / dt)(1/√(9 + sin2t))<3, -sin t>
= (1/√(9 + sin2t))<0, -cos t> - 2sin t cos t /(2(9 + sin2t)3/2)<3, -sin t>
Find the normal vectors to r(t) at t = (π / 4) and t = (3π / 4).
T'(π / 4) = (1/√(9 + (1/√2)2))<0, -√2/2> - 2(1/√2)2 /(2(9 + (1/√2)2)3/2)<3, -√2/2>
= (√2/√19)<0, -√2/2> - (√2/(19√19))<3, -√2/2>
= <√2 / (√19), / (√19)>