Compute the Jacobian.
G(u, v) = ($au + $bv, u − $cv)
Recall the definition of the Jacobian.
The Jacobian of a map G(u, v) = (x(u, v), y(u, v)) is the following determinant.
Jac(G) = ∂(x, y) / ∂(u, v) = the determinant of the following table interpreted as a matrix.
(∂x / ∂u) | (∂x / ∂v) |
(∂y / ∂u) | (∂y / ∂v) |
Jac(G) = ∂(x, y) / ∂(u, v) = det(Matrix A) = (∂x / ∂u)(∂y / ∂v) - (∂x / ∂v)(∂y / ∂u)
For x(u, v) = $au + $bv, and y(u, v) = u − $cv, calculate the partial derivatives in the Jacobian.
(∂x / ∂u) = nc1ItEz0kR4=
(∂x / ∂v) = iSba6t70dtA=
(∂y / ∂u) = 0VV1JcqyBrI=
(∂y / ∂v) = YWSdEbNFjeo=
Compute the Jacobian.
∂(x, y) / ∂(u, v) = (∂x / ∂u)(∂y / ∂v) - (∂x / ∂v)(∂y / ∂u) = U2GIbglD1oM=