Calculate Tr, Tθ, and n(r, θ) for the parametrized surface at the given point. Then find the equation of the tangent plane to the surface at that point.
G(r, θ) = (r cos θ, r sin θ, 1 - r2); r = 1 / $a, θ = π / 4
Recall how to find the tangent vectors, Tr, Tθ, and the normal vector, n(r, θ), to a given parametrized surface, G(r, θ).
Tr =
JLEu7EXpIxt/mRKT1TX0uvdZJ9zUn4fp97H8eiW7KuvGkP0B9zBYZa+QavidDZoRwtnlKH6PxISRMsfmOiNVyHwnsw1o9fp9HHxE+8AycPOVsb+x5J0ILMJ4ULGJXCv4u2k4D+HU9rYCuFOcmSEVRw==Tθ =
EXmwi12BxQlVBrmS2LnKVidjUgR1B0boqFIZaiPAT5ojGURqKvDwLpglyboRUqTxG+gyFX4/h1fmEJSDGWVeiKDeyqPcX3WRwAPD9nH/K9NYaw2wTBHdBQnDKLA6UQAYgXfcfQxL2tQ6iWe7iDYVSg==n(r, θ) = Tr × Tθ
Find the general expressions for Tr and Tθ given G(r, θ) = (r cos θ, r sin θ, 1 - r2)
Tr = (∂ / ∂r)(r cos θ, r sin θ, 1 - r2)
= <cos θ, sin θ, FmAhxBkQqN0=r>
Tθ = (∂ / ∂θ)(r cos θ, r sin θ, 1 - r2)
= <-r sin θ, r cos θ, 1Wh3cvJ2xF4=>
Calculate Tr and Tθ at the point where r = 1 / $a and θ = π / 4
Tr = <1/√2, 1/√2, -2/nc1ItEz0kR4=>
Tθ = <-1/(nc1ItEz0kR4=√2), 1/(nc1ItEz0kR4=√2), 0>
Find the general expression for n(r, θ). Let the table below represent the matrix A
i | j | k |
cos θ | sin θ | -2r |
-r sin θ | r cos θ | 0 |
n(r, θ) = Tr × Tθ
= <cos θ, sin θ, -2r> × <-r sin θ, r cos θ, 0>
= det(A)
= r<XvVM00l89Is=r cos θ,XvVM00l89Is=r sin θ, 0VV1JcqyBrI=>
Calculate n(r, θ) at the point when r = 1 / $a and θ = π / 4
n(1 / $a, π / 4) = <√2/iSba6t70dtA=, √2/iSba6t70dtA=, 1/nc1ItEz0kR4=>
We now wish to find the equation of the tangent plane to the surface G(r, θ) = (r cos θ, r sin θ, 1 - r2) at the point where r = 1 / $a and θ = π / 4.
Recall that an equation of the plane through the point P = <x0, y0, z0> with normal vector n can be described as follows.
<x - x0, y - y0, z - z0> · n = 0
Find the coordinates of the point on the surface G(r, θ) at the point where r = 1 / $a and θ = π / 4.
P(x, y, z) = ((1/$a)cos(π/4), (1/$a)sin(π/4), 1 - (1/$a)2)
= (1/(nc1ItEz0kR4=√2), 1/(nc1ItEz0kR4=√2), SFgqQUkJGdg=/$b)
Find the equation of the tangent plane to G(r, θ) = (r cos θ, r sin θ, 1 - r2) at the point where r = 1 / $a and θ = π / 4
We will use the equation <x - x0, y - y0, z - z0> · n = 0. The point on our surface is P = (1/($a√2), 1/($a√2), $c/$b) and the normal vector to the surface at that point is n = (1/$a)<√2/$a, √2/$a, 1>. It suffices to use the normal vector n = <√2/$a, √2/$a, 1> since the scalar factor of 1/$a will not affect the equation of the plane.
Write the equation of the tangent plane by computing the dot product.
<x - x0, y - y0, z - z0> · n = 0
<x - (1/($a√2), y - 1/($a√2), z - ($c/$b)> · <√2/$a, √2/$a, 1> = 0
(√2/nc1ItEz0kR4=)(x - (√2/U2GIbglD1oM=)) + (√2/$a)(y - (√2/U2GIbglD1oM=)) + z - ($c/iSba6t70dtA=) = 0