Chapter 1. RogaCalcET2 2.4.023.Tutorial.SA.

1.1 Problem Statement

eval rand(5,9);
$a-1;

Determine the points of discontinuity. State the type of discontinuity (removable, jump, infinite, or none of these) and whether the function is left- or right-continuous.

1.2 Step 1

Question 1.1

The given function is a XM710SMi641HyNNecqNOfH4LMtA/+uB6FTuzbFDMCSM8K2RI8zMhAA== function and it is continuous 9bNSmg8XLMp82FekXNTzdLcSKM+x6IoldhY6JiT8HszcnOkA4iQuFBtCPKHBFq/uOgkAB4M8XzAUZmbdlvnVsxzdlDKHFILz+T6efMzs2G8=.

Correct.
Incorrect.

1.3 Step 2

Question Sequence

Recall that the domain of a rational function is defined for all values of x except those values for which .

Question 1.2

Solve for x.

x = ftB1gIsQOozdRQwA/JPVx0k4/R6UPT/F9dFxb7cMfFM=.

Correct.
Incorrect.

Question 1.3

Therefore the domain of is all real numbers except

x =ftB1gIsQOozdRQwA/JPVx0k4/R6UPT/F9dFxb7cMfFM=.

Correct.
Incorrect.

Question 1.4

Because it is a rational function, is continuous over it's domain. Thus, is discontinuous at the point x = ftB1gIsQOozdRQwA/JPVx0k4/R6UPT/F9dFxb7cMfFM= since this is the value at which f(x) is not defined.

Correct.
Incorrect.

1.4 Step 3

Recall the possible types of discontinuities.

Question Sequence

Question 1.5

If exists but is not equal to , then x = c is a(n) eHjzXf7gcKm0dLL/5oRTaC348tLf+XHS8ZQobsmQTS4= discontinuity.

Correct.
Incorrect.

Question 1.6

If and exist but are not equal, then x = c is a(n) Au6BjwX198+Y0xRTH+8NaWPj32E2K1ICN2kVgw== discontinuity.

Correct.
Incorrect.

Question 1.7

If one or both of and is infinite, then x = c is a(n) 8Zch0aesnQY3cV5BJQoTpBdBoGzhcVMmL27UzU0slrA= discontinuity even if itself is not defined at x = c.

Correct.
Incorrect.

Question 1.8

To determine the type of discontinuity at , find the one-sided limits as x approaches .

=ugHNTI1hRxM=

=3LecBr2w/JA=

(Use "inf" for ∞ and "-inf" for -∞)

Correct.
Incorrect.

Question 1.9

eS5qza/T2zjqxFhQ+EaKo9xz/aZtnJFYG0osnPaEQfdxOwKYIarbLG6pJgMly6tqQ0QqyQa+ghaZIqQuOjrVUEoC5PCTseZybt9CGxiW8utdXKjLF7g6/f34Rs3z/Y4s96wCBBtTPjqcH+CCpHX4nLpD5VzbTIqYXm/wixEC6xXLTpEV1D9GIe0Z+8kjIleJTMPCthzgMjEMM3Cf3Sr30GNQW6Qzv0HN19EJNDjtXKpZkBNC7Y7OZnyDHWm17bFdxCRZmXE7Id1nfptFV4NVpHchk6YOlM9+aPTlCH9UUcl2TRIL/ZDlbjYvZ5PJfTe7wX3SAExEv408zQDHB0D3wltVUPzh12mEf7S5fm7+Sz2ecYfk+2CKrOA0qXd8xkCQDc7KrGAQKzdMzqIc
Correct.
Incorrect.

1.5 Step 4

Recall the definition of a one-sided continuity at x = c for a given function .

Question 1.10

If , the function is T1QAvMquxITmteCofDF98w==-continuous at x = c.

If , the function is y/8elwqLKvMQPfWtffwxDQ==-continuous at x = c.

Correct.
Incorrect.

Question 1.11

A graph of the function is shown below (c = $b/$a).

4jZ7DcLXmB9NnF8fqaXtdXsYdvdMRU1P2TALKGkBwSw300MB9zGzcM7fDzFKrODzfun8H/liCLMaRoLR1QWzk8vjFozTJKj5+YKIeAzh9AgovzA+VnalEZkxzKunpz7lMCPi1jp+kLNFcvtS/j5HwiHjtK5ZIxBaZsbgPa42bVtNWKWjUg3mRxtM49fwXfFMKKRqjBGeUt9lY85BKODNGKwborck7XpJ24kuTTIJXIhLvOG4kVZXLNy60rBLem06Q9nwLaHRCODyyXj03k7T07rG9/XciPWzBx/6xU/hwoY146vpOiRMwN/zllF/7PVA/8jfxEXgQyiMGkLFK3gEHJilQbUsT3QX+h4Scwl4CdQuIyeV/Hc+JISW10qZXfJIqDdhG6BXMHyBKSxd2tPxDeRGu2dbKmLBTRpD6rJlTRrryma3Initd45z+hUKKQLYSC7mjZsbX0ypJjqGF9PB+deRVovzF65LAHvUHuPvKpNaQXTEKxpawMfvVlOryVW2v7hGBIxTxtlHOMVuxjTdO4fDzz1mn7V7GnN8Px7xDXS9Gt3CmH3bjDkW75k6TXYSLnmj3c6yoynO4Cx9Oqmx5NO592IgjsHaq/Rydf4j8S7nPxuRLEGofffICz/45+DX0xNKXrGTcmQ+RwV0x9ZCYGHmMuywof1vWdU9coSkJoQDB5+k2FOm2UVQIjdhByszlU9J9w==
Correct.
Incorrect.
true