Evaluate the integral using the FTC 1.
The Fundamental Theorem of Calculus (Part 1) states that if f(x) is a continuous function on an interval [a, b], then where F(x) is an antiderivative of f(x).
The given function, is defined for all x on the interval and is continuous.
Find an antiderivative F(x) of f(x).
2mVxHbKOGPtywkU42At7s6nT6kFuR8LLzLU2X49I7cXcsUYfK2cBDQ9ztDr5jn3Ew3fqJ8iDSyKtaFagAWj3EV7tvQX0/OncBnnjHpt6dsLegTq30rgcT/LOytukmAGYnsSpaEqdNFs+gkdHxgGZ5CnWvDOXIkAIIxAwcMeIdG2URMBDc800butLDlRiArhWOq2yAJy+HO80xGO+bBaaxT3NN1ecfiJQHXIXswEngei51EzPLZl0nN4vkQNvN4oBlw7gYiDsqVQIvUgGUAcgOCbe4jllDjKAxgeGYS2+H/AIcN9qzaeXmjeyLroF16NZosycHXkCraL8PVWUolDzT1IDwmqeSVonDAGsGpQRWRthBVAaIRe7zoGgUK4gR6t//j4WzigoSDzl68KDbp7Ria/f3DNW8qpmpZySsn6+xAmLhk5HWZ6rbf0Pnl+auJvc2D2viAz16E/DJFgJM5ABaV7Sadktw+KN1SzXF8xqcPbgp/NtbO9thvTF4DK0LivyYcJyp2MFJgCEIG4SvLXVwxpbLs9cwt+vScHk77wCcdIVcPk0J3ZoZOgLc0Yur/zzzWGC2wKA0Y9k1lnzTnKfFCq3GpKqMA3zI3EkFStxoXclWiHayWlDbTFsRbgu+UDdyT/n93KrqQwVDT/qAVHqYXPcYPphzizPr6u3AQnaroLFVLSxwyCp3MzkZUw1uFTxTlJy+RHHPmxhVnkHcBnVUxdccd49Tj1VGg3jw2ICxSEFpNNyx+xc0pC6gpfvK19h391YWsdTbDf0GlnNy0ho1JufJkN4lWkmr0/0zAqSGf1dooQLnUokKZqHrI6FqSA717M5AAFdhaCZWY1v67WQqkxmGcbqZyXcqWc/am1h6nPtUjTpF514BSZI9iBFA3RPiQv6V9vG0/a4OC1zoVVuS/QUY3c218h6bq8NurOX06qzm8YwhpdjMxeSKZ/GFaidpHM8PRyq18pVsZRwA0y4eiQHqIHubBc5KUjpyK3kN2ND8nMbmkayAQGZZsEgBZSs8cvPsqARIn2BlLLQC/ggLFZIlbXStfXVgjzp8DESUWSD33Bcc15a/ZGf7S0GrzuWGIoq+Q4WSFs=
Recall that the constant term, C, cancels out when evaluating a definite integral and is omitted in the calculations.
Evaluate the definite integral.
qjqZz1N+poo= .