Find the formula for the function represented by the integral.
The Fundamental Theorem of Calculus (Part 1) states that if f(x) is a continuous function on an interval [a, b], then where F(x) is an antiderivative of f(x).
We can use the Fundamental Theorem of Calculus (Part 1) since is continuous over the interval for .
Find an antiderivative, F(t), of .
iWmKZbsz7UnUppasIXeXeRj5odIdAdDmHdWu4khMn7nV+oztJxLRQsayqOwq0npq1u7HM6ckBUCET4vPDSJdIOtt7X1KEIa7JJ55y16ZnU2s6fUlyDpPRAZvT/MU+LZXtWmJ314Fkm8oZbnlkqGxxk/4vgpIm8KqaXGEgm7LUTs6KlOZpiS1MO3Nfqq22OITeMp0/xx/uM+4U0C3vqprbgZc8Er+ixPEjiLt5A8c1LOkl4tweXRIlV6lccvidUQAo++DeN57VlGRX6fq1hBWIaVbQkgbQWGxU1idt1DfC6zZ9jb5SkKTbLAZY5oRc1aF7B3rIG7ScMAQoZdwj0L1ZolJqy2euNipRwB4EC/8deQUPS7qaTcssnnrKaNzQ29kbQuiGH7J/5UvUXFGR+sQvpmk8gwoJeQmuDTDsJl4mYx8bTxuJV9huEGm2uNejQr4n5ZnwFDvX/Uit1mUlRON8eix25ystR71eu3qhVfN3eFDtzST2CwB1Vaa1U+/WGoPHsBDfGiGSw7umTYNCr6Oq5kacl3afAfo8jZtmRK93cNJj7NEiWqt5NHYVH0pGflE5OTfAwfC24WHMu+L02zjd0MyC+QkTsVCGuGD0Ju/a4qLbc+S+vMMrcdf+d3YJhLTz4kHPirsKbn15ibg/gxdx7etnnwNqel/aA3cXwDUqtjqyqz+tomK9sssyV2JHYOqGxlKH5QwX1XJaaeZGhm3TL9f9GTJcX86zMm4Qr1GyjYSVLYXQNrxwJ0J2YNvLyWdRdZ8X/f8rfYlrAVRV9cVAaqRogyfbc+8zvg/gTbOBUKdhfAmexPUr2RcSpT7u5XVy7qsWRZYT5H+r+5a4xSk5600GX+IAfQEifJcZPgVUvIPWnQ0oyzryriwPLsKF45ipCL2xQLgxNeiewA3c4XLuUfAVj4+RNhLjoiuAwVaVxITz1kuTZ5pXLzgIPVEx745E7qjmj6Ttgj1CzSlgf5CXsd4Gvr4kcNNLcb1r5Mo/yM+fdUamvCbpQpi87G9Qf+xtz+utvv8SlpUf9pEnKoQNkLfmJWOacCOYUvSxAnqun8/BbvqjhW4tetv7UAnzWv6C1CYZo9/IlShUaSZ32iiWrOftsNVSPqsT2HRDIOEflQlFxrXkITFV/Ne34RpVErBDFGvYo4OsacvrepUjicCup+NMjk4dLHE/ffhDw==
Recall that the constant term, C, cancels out when evaluating a definite integral and is omitted in the calculations.
Evaluate the definite integral.
pBLCpfnaHbc1Ttue43HBwDGrRtGrAaS1/kYxxitXLlgmEQvtJJhmIhK0Eh3wdXM0RGzrZoZ2oBrKRq4I0pln1C0jNIDjDTLXRCpTS6Pm2WuF9SXc06BTRHyAepiYNVz6E1C030Z34N+upvIYkKqII4SGiRwvBwczcBXSwXzDDNcVzhokWgfP7XMRdx68tXt6c1hoaQZvpvR9IDS257R9YGf8JNfgqxAaEJrRiFfBUbORLfMWXBBlszigHfM7XfGx7tYiWa5u80bdVgMoEAWpqL3mjufptBvUx05rYV6mJMLvFR0ZDetNZBVXEKGCZo5mrEq56j8XAL9lfmpR/+nPXHdtbmTWU/kCX4wbvJrwmTPYqj3Pw7ikpOTvgRfc/Y6WPJWOR1Be9JOyRKXdySQCQsJPZ63mVjvlZixqJcEhn8fWcEMFk/S0OIU5JSoHLwRgkMplXfeRb8oqlXdop5hDdvmi32OTd2LvYzFGoOzhGdC1QUkMqOWNuMiY/lV/APPv/5MS6ViXTHVBadylztACGRIZaCEALP7j9qtWcZZGcei+SQ+BX3cF/PQCjniRD5UAnlpV35eS5fRTX0lc9W2bNLiwck5BJIVZBFd3SJCaCA6oETw4uXvaKibw7bkvkBbp2nlYPUHu6/0lh8cP63vNrmPA2iBg6Zy7CWiAnkv/3jC6d99lmXVWeIz2qkVKTJca6NLIducXZQJwpEZUQ1xgvPwGgejcljTlGitQ1eu/01ptOYJdZWWDUODVjr3gfic6ttA3gZAKCpjpqvM+pe7EqEn5nc2S/dGivt+N3ToFl6oGpbjV0atrf+4eNaHMTEvgcgFqVSOvr/fajuFSD//VdlfXOakbefSidyVpRmP7VSUeSQ5aG3bXguVUnDSksEf0c+q6p0iBJ2KVq8+8D6A9WlV1QycGv9lcmXfGgqOoul0d4jCxWgIerjV4Le7Xoq0n1fqqHWP63BkvwQJUnBuY+5etNEyZl30J75rVyTEvR0lV849xVEeOFVMkdEKR83ytj11ewFKHo9NiDMGSm0dB2V8/kZ94rBgZhEIddoOeK7Y3DhLNLtOX7wBjOj13Jr5nxyCvVwA/Ql9cd1s0ObAixM9N/uWnz1jhgKGbF5cTeBmQZwI1NXIBBH3eQ/aQBnCwnE3n5wxEqPfb2cBhE4FUuA==