Speed of an Earth satellite in a circular orbit
{"title":"Speed of an Earth satellite in a circular orbit","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,48,22,77\"}]"} {"title":"Gravitational constant","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"131,9,166,47\"}]"} {"title":"Mass of Earth","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"rect\",\"coords\":\"167,23,211,47\"}]"} {"title":"Radius of the satellite's orbit","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"175,84,202,114\"}]"}We can find the speed v required for a circular orbit of radius r from Equation 3-17 for the acceleration in uniform circular motion acent=v2/r. For a satelite of mass m orbiting Earth, the acceleration is provided by Earth's gravitational force. From Newton's second law, this says
FEarth on satelite=macent
or from Equation 3-17 for uniform circular motion and Equation 10-2 for the law of universal gravitation,
GmEarthmr2=mv2r
To solve for v, multiply both sides of this equation by r/m
GmEarthr=v2
and take the square root: