Chapter 11. Equation of continuity for steady flow of an imcompressible fluid (11-19)

Question

p0whopm5t8Zf3MpvhEFSiw5Sd+7oUrqIby5oShvjRs8LcOAGn8Dkygz3b4v5vq7w
{"title":"Cross-sectional area of the flow at point 1","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,8,40,56\"}]"} {"title":"Flow speed at point 1","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"73,16,99,53\"}]"} {"title":"Flow speed at point 2","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"poly\",\"coords\":\"132,99\"},{\"shape\":\"rect\",\"coords\":\"249,16,283,53\"}]"} {"title":"Cross-sectional area of the flow at point 2","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"177,8,220,54\"}]"}

Question

f8PcwLjk6pVuRXQvcTrK5g4xrXn8BQPu/TcCDg==
{"title":"Cross-sectional area of the flow at point 1","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,8,40,56\"}]"} {"title":"Flow speed at point 1","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"73,16,99,53\"}]"} {"title":"Flow speed at point 2","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"poly\",\"coords\":\"132,99\"},{\"shape\":\"rect\",\"coords\":\"249,16,283,53\"}]"} {"title":"Cross-sectional area of the flow at point 2","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"177,8,220,54\"}]"}

Question

P/N2flE66ezBspw5V4ipU6yp2EikxTuCn1b7mQ==
{"title":"Cross-sectional area of the flow at point 1","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,8,40,56\"}]"} {"title":"Flow speed at point 1","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"73,16,99,53\"}]"} {"title":"Flow speed at point 2","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"poly\",\"coords\":\"132,99\"},{\"shape\":\"rect\",\"coords\":\"249,16,283,53\"}]"} {"title":"Cross-sectional area of the flow at point 2","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"177,8,220,54\"}]"}

Question

8OItxTMUB3B3V/qaPndhatdx8NdjL46udBnj2FD/Mq/s0qTBjrRjKZiJcdTu8IUv
{"title":"Cross-sectional area of the flow at point 1","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,8,40,56\"}]"} {"title":"Flow speed at point 1","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"73,16,99,53\"}]"} {"title":"Flow speed at point 2","description":"Wrong","type":"incorrect","color":"#333300","code":"[{\"shape\":\"poly\",\"coords\":\"113,132\"},{\"shape\":\"rect\",\"coords\":\"195,33,199,34\"},{\"shape\":\"poly\",\"coords\":\"132,99\"},{\"shape\":\"rect\",\"coords\":\"249,16,283,53\"}]"} {"title":"Cross-sectional area of the flow at point 2","description":"Correct!","type":"correct","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"177,8,220,54\"}]"}

Review

It takes some time interval \(\Delta{t}\) for the slug of fluid to enter the region at point 1. And since the volume of fluid between the points must remain constant, the slug of fluid at point 2 must exit the region in the same time interval. If we divide Equation 11-17 by the time interval \(\Delta{t}\) it takes for the slugs of fluid to enter or exit the region, we arrive at

\(A_1\frac{\Delta{x_1}}{\Delta{t}} = A_2\frac{\Delta{x_2}}{\Delta{t}}\)

To see why we divided through by \(\Delta{t}\), note that the fluid at point 1 moves a distance \(\Delta{x_1}\) during the time interval \(\Delta{t}\) and so has speed \(v_1 = \Delta{x_1}/\Delta{t}\). SImilarly, the fluid at point 2 (which moves a distance \(\Delta{x_2}\) during the same time interval) has speed \(v_2 = \Delta{x_2}/\Delta{t}\). So we can rewrite Equation 11-18 as the following relationship called the \(\textbf{equation of continuity}\):