Total mechanical energy of the oscillating mass–spring system
{"title":"Total mechanical energy of the oscillating mass–spring system","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"1,23,22,48\"}]"} {"title":"Spring constant","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"252,21,270,50\"}]"} {"title":"Amplitude of the oscillation","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"272,21,292,47\"}]"} {"title":"During the oscillation, the kinetic energy K and spring potential energy U sub spring both change…","description":"Incorrect","type":"incorrect","color":"#000080","code":"[{\"shape\":\"rect\",\"coords\":\"51,18,73,46\"},{\"shape\":\"rect\",\"coords\":\"106,16,131,48\"}]"} {"title":"…but their sum, the total mechanical energy E, always has the same value.","description":"Wrong","type":"incorrect","color":"#333333","code":"[{\"shape\":\"rect\",\"coords\":\"251,20,271,50\"}]"}Equation 12-20 looks like a complicated function of time. But we can simplify it thanks to an important result from trigonometry:
sin2θ+cosθ=1 for any value of θ