Chapter 12. Angular frequency, period, and frequency for a simple pendulum (small amplitude) (12-27)

Question

74ZQsRWNs5eaxFMtu1ST1zsHSXQD2A/8
{"title":"Angular frequency","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,23,53\"}]"} {"title":"Period","description":"Wrong","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"3,135,21,159\"}]"} {"title":"Frequency","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"1,240,21,276\"}]"}

Question

i3GYZUGh83sgFQrZ
{"title":"Angular frequency","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,23,53\"}]"} {"title":"Period","description":"Correct!","type":"correct","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"3,135,21,159\"}]"} {"title":"Frequency","description":"Incorrect","type":"incorrect","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"1,240,21,276\"}]"}

Question

6AjRK1rC+/08Tcq8CY6Akw==
{"title":"Angular frequency","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"2,32,23,53\"}]"} {"title":"Period","description":"Incorrect","type":"incorrect","color":"#ffcc00","code":"[{\"shape\":\"rect\",\"coords\":\"118,11,119,13\"},{\"shape\":\"rect\",\"coords\":\"3,135,21,159\"}]"} {"title":"Frequency","description":"Correct!","type":"correct","color":"#333300","code":"[{\"shape\":\"rect\",\"coords\":\"1,240,21,276\"}]"}

Review

As in Section 12-3, the period \(T\) is equal to \(2\pi\ /\ \omega\) and the frequency \(f\) is equal to \(1\ /\ T\) or \(\omega\ /\ 2\pi\). So we can write the following results for the small-amplitude oscillations of a simple pendulum: