Chapter 25. Lorentz transformation (25-15)

Question

DtiTylFfW/520CjGcxWcNnlaN2EC2ZK4h17qrayTfwTA4O4eB2xjN3lFiRtfWtjTgDeY2LBbCaX+RuUA4n46gpp+ngocqrQyvEo5O862eOYZ20fxRMhwgyETbl+2XEvbeRaLSuJreQXY0r96H3UkG1IoMev+O7DxeKYYh5UApQ3Rm1p+tFTilw==
{"title":"Inertial frame of reference S′ moves at speed V in the positive x direction relative to inertial frame of reference S.","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"104,1,122,23\"}]"} {"title":"Coordinates of the same event as measured in frame S","description":"Incorrect","type":"incorrect","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"121,4,134,24\"},{\"shape\":\"rect\",\"coords\":\"41,113,60,133\"},{\"shape\":\"rect\",\"coords\":\"41,148,59,166\"},{\"shape\":\"rect\",\"coords\":\"118,190,139,207\"}]"} {"title":"Coordinates of an event as measured in frame S′","description":"Incorrect","type":"incorrect","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,22,14,37\"},{\"shape\":\"rect\",\"coords\":\"1,112,13,135\"},{\"shape\":\"rect\",\"coords\":\"1,147,16,167\"},{\"shape\":\"rect\",\"coords\":\"2,218,12,237\"}]"}

Question

St3Q/BgDyjuHs4GWJEP6s3mMpUm1s96l4yWaja6F8/kDbH8rPw3I4xGcv7+0E5+QiAim9iwkek/L/pXE
{"title":"Inertial frame of reference S′ moves at speed V in the positive x direction relative to inertial frame of reference S.","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"104,1,122,23\"}]"} {"title":"Coordinates of the same event as measured in frame S","description":"Correct!","type":"correct","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"121,4,134,24\"},{\"shape\":\"rect\",\"coords\":\"41,113,60,133\"},{\"shape\":\"rect\",\"coords\":\"41,148,59,166\"},{\"shape\":\"rect\",\"coords\":\"118,190,139,207\"}]"} {"title":"Coordinates of an event as measured in frame S′","description":"Incorrect","type":"incorrect","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,22,14,37\"},{\"shape\":\"rect\",\"coords\":\"1,112,13,135\"},{\"shape\":\"rect\",\"coords\":\"1,147,16,167\"},{\"shape\":\"rect\",\"coords\":\"2,218,12,237\"}]"}

Question

N0NxAojBb4Pc6Uf90YHFKBB+W+89ku+B9msX+JKPxjp/1YS46+i55O8x6oYKIENhqjmRRIjOklAud/9N
{"title":"Inertial frame of reference S′ moves at speed V in the positive x direction relative to inertial frame of reference S.","description":"Wrong","type":"incorrect","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"104,1,122,23\"}]"} {"title":"Coordinates of the same event as measured in frame S","description":"Incorrect","type":"incorrect","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"121,4,134,24\"},{\"shape\":\"rect\",\"coords\":\"41,113,60,133\"},{\"shape\":\"rect\",\"coords\":\"41,148,59,166\"},{\"shape\":\"rect\",\"coords\":\"118,190,139,207\"}]"} {"title":"Coordinates of an event as measured in frame S′","description":"Correct!","type":"correct","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,22,14,37\"},{\"shape\":\"rect\",\"coords\":\"1,112,13,135\"},{\"shape\":\"rect\",\"coords\":\"1,147,16,167\"},{\"shape\":\"rect\",\"coords\":\"2,218,12,237\"}]"}

Review

The Galilean transformation that we presented in Section 25-2 is not consistent with the postulates of special relativity. A set of transformation equations that is consistent with relativity is the Lorentz transformation. As in Figure 25-3, we take frame \(S'\) to be moving at speed \(V\) in the positive \(x\) direction relative to frame \(S\). The origins of the two frames coincide at \(t = 0\) in frame \(S\) and \(t' = 0\) in frame \(S'\). If an event takes place at coordinates \(x, y, z, t\) in frame \(S\), the coordinates of that same event in frame \(S'\) are