Processing math: 100%

Inverse Lorentz transformation (25-16)

Question 1 of 3

Question

Inertial frame of reference S moves at speed Vin the positive x direction relative to inertial frame of reference S.

Feedback
{"title":"Inertial frame of reference S′ moves at speed V in the positive x direction relative to inertial frame of reference S.","description":"Correct!","type":"correct","color":"#99CCFF","code":"[{\"shape\":\"poly\",\"coords\":\"82,133\"},{\"shape\":\"rect\",\"coords\":\"10,16,12,16\"},{\"shape\":\"poly\",\"coords\":\"144,22\"},{\"shape\":\"rect\",\"coords\":\"103,1,119,23\"}]"} {"title":"Coordinates of the same event as measured in frame S'","description":"Incorrect","type":"incorrect","color":"#ffff00","code":"[{\"shape\":\"rect\",\"coords\":\"38,113,57,133\"},{\"shape\":\"rect\",\"coords\":\"37,146,55,164\"},{\"shape\":\"rect\",\"coords\":\"124,189,142,206\"},{\"shape\":\"rect\",\"coords\":\"118,7,128,25\"}]"} {"title":"Coordinates of an event as measured in frame S","description":"Incorrect","type":"incorrect","color":"#00ff00","code":"[{\"shape\":\"rect\",\"coords\":\"1,22,14,37\"},{\"shape\":\"rect\",\"coords\":\"1,112,13,135\"},{\"shape\":\"rect\",\"coords\":\"1,147,16,167\"},{\"shape\":\"rect\",\"coords\":\"2,218,12,237\"}]"}

Review

Equations 25-15 are useful for finding the coordinates of an event in frame S if we know the event’s coordinates in frame S. If we instead want to determine the coordinates of an event in frame S from the coordinates in frame S, it’s most convenient to use the inverse Lorentz transformation: