Quiz for Document P3-5: Edward Savage, Liberty. In the Form of the Goddess of Youth, Giving Support to the Bald Eagle (1796)
Reader Quiz
Part 3e
true
true
Select the best answer for each question. Click the “submit” button for each question to turn in your work. Click the "Previous" button to navigate back if you need to view the textbook.
Question
1.1
AJGe6VC8WW4DHyJbwAItgg2DYclOooltCVqA89Pg9sP4rkw3RAOzA27NcqQLtTs5mYXJDYj11hsrb4F19RV2IxjV3QkjJ57QhhwCGxgpEH2CNEyCwygQIkzJY0+tstYxlq5371lQ1kcWmZnwBSDPB0UtO1Ab6h7ZwDGyGz6qbSKtoVmhsXbQCDJcIyVNQkaEcIVhHEnwnGOIdNKOdla6RXzQdhzgQmXztiCJ4O0AZu8eMceOoiDus9rIk3bc4rW7hIUFGPsshqt1oZ+eGp0vgnI3/FQFRjlQ83/H9DcmH4ol6NoVY/OVL2x90awyzc7I17DKNM0RXGApzAZ/eWR2sooOLWJZWviRY9v1ZwRGiOhH0PvWAw6V1QDuLthVS9EM20H28yBSOiU7NMUM1/5x4y4xSSMLtQyaj4mia9gmFz46va+4QGas3NwpOzOipRqCpvmu0QJUoJD99yvUrpzll3lizsGFLkNgPVJuGM6cORx1hV3kix3tG936xKwCPgooRjRfR5cuU7NoEJs6soAuYqXg6L3auR6padXkXypZnpwGdzv6uXfwaFdVjxQVG0YxfRxiC6jIShjaOD/5GMp4mFG6HD3lX+R7QoiOsyGg5mIFYjxtbBu4amq3SzWa7EpZxmSTn8ahReRr+TesvwWrnbnnYxgOXOlXy7F7DwHUsJomAWHEVbkwfA6Qcmp4+Xr2mXd6Tyr84LFEAslitsG0l5pbFJ2J0Zn8J311W2IUJtb7EjJ1HdeGBSJ9R+X6h8hhxWdCoHNgjp3DlCTD85cNTRnhL1RQTlC+fiUv4WSb5YwkAnRDTijqA1O8fitIXMg8DdPInauxSR4lvWuLOaSDoCIt1aat/e735jL7AR0Fcfp2F9Jntv7hofmxYBEXtStuepdfC4Rnc+lWuAlTr4FbUjSFufN/yHGhZzUUheQ3tOmkhjwgDO0lrMIlX9LotEcL5FLGHNN2whK8SSabokUOY80pa/DBBqxVKZ8aquS0YqqOc+E85ju7pMn6STjGsk5290kV2MCCB1nt3ya35vpN1KJUBbaRDA/UhOO80Q0g2wFwbNAWAF2c9hzwZDLmViMPWgzQJPnxg5qHtcxcvREv0jk2gtitb1MmrCmFsUfcCmjx0QZMSuoP55zZlGMTeBAUKy3PeCO6X4T/GKHhD3dWcx6C74FZOEFNpV7O3rl5okWsAegFnJ9ftQ+PEvdkurJB7bu0fu+Kyy1lZRO3hHtDQWNEEdX5g35UtJB8cPxY/RFfQX5Ck9sgWJgwqn/3TXkkMwjn8oyJ6f9+mSeCnjs0JUJ1Pc9QDJbZPcyAcfS63Tz465ZGiOq+JjaDXfuNsy86RDJddzdst+C9zvPEU+oJo3IBJpQMadh3Mrdn/W3KYlNDifDqioSzFwWg7HILKvv+e7og3EJb+7NsZ7mztyyLRa4xmwTIGawN7pDWVyIDvUa3bK+uylxcoFaLwohk95Qd/sQ+uyFK7szaAteuBdwNn+czxWufWUQa7ASJfZ7qjpbHK/HkVg7tzlbXjWXZVoTyqzcvmj5vLUw71bNVs3PBdSD/T1n05mKPI0apr0oAwSZzTltanJFXjyhmHDmvvu6IXfKDdySS3APGXmpwZT0Rn9wKy7zifzZ9ks2wm4ib5ApLyhmFWaquZkIevvBMelk5/qCUdpM+ersTIKaCN5ZZRwTvcWZgTjZ4cGxX8FkdENTB57RhciPcPvlAce6cvzpilFFkUdxSV8m1k4DOQaYyB84tBi6QxHGrSBPzwR24+WRppJLXp8ZOw9O+8edLsDAxt05YVHFnBOqhuoe3gZ6R/VSl9jjtw9YYF/KFIeS+Oz0aTbyty+rSphqyutwpJb9tQJcT+CVjzrC3PZaGiP8/6JHYLWP5+rtaXmxw7LG4CQCD0T5Bz5/Chv0Q2Rim4/pO0TXsYQ7CXsZaPE/3HflEA/b+giRqFeuZ7O30T66O6nUiaNspugHMfDtOnIOICSK9NHwZ3YY65s+57ebw7jDxkGK9683vjT6/BUU+bd5tkt1DhCy7VZIaZKV3RpV4OzIqYAc3pSEIzIL+niYYX2592ldKbmTCAbm6X3CkzTjJkeBThk0y0CHLP3n+j1jgRdN/F/7OnenQWxjZy9RCwMbnAsfYTGzjC2vCpof5ta7qfflllMzOn/e7lLJLsKHPlXN8lbvQA9wi6Y4mKmm1M1cpO1KrCY9x0gmpGO2lFH9yQ71PJ/tteTKTvArGrSiqh6s3oerp2ozGcvj1Ey/lzwZm4hw0pQ4qLe8veWR7aPgwVA8MFXshTUnAciQzBcHGaLi4VyWmN4gsWf5fovxPAUGrFqdDoYbNkA2K1tvdF5hiQOrOg7UuwxsCAEGuG9Z6I6AUp86SGXpMtzNfbYiBR4868DqUG+eFiSjvX83YPEB64kMdw77uuRpl66zgncS2hEkJ/+OacHxO7JYiPb19GGV7ZFb9XU6FeR7CggX9eG+BXxzyqnY7Tkw8n8ymDs0GeFkCWpRhQndH4ECnin690gnM2i020r/w7YBgfJmeh4YoPQ4z+fVdd0W1a5NAMLOslh5VF+SIbCV7Ov2goYfXOAR0ZYcM8C/dqdZUwT1l9fR/WsPdY7U+0rIU8vn2rfX4QmSQnDcosd+9DPKL0J9Ofdkchgh5qckehlpTZ0Xw0jxh1it7LpONaHr8ouYAyyCmDmD13MimuBpv3wt20PPvl6ZTiyhpoxcTFSF94SDwopVqqvmo1dPNNRlEEDmAZq1mYUy9n+vkxLU3keLau4LnpzSsTQmKnmLH8n1ouGhdlLsdWvJd0NksGDFoiBrjy7/arXQO9xCiORLR8KclcRxlwu/lxzPlYHlwvhf2/3+U/xUePqhCBRlN69VUhEs9PVgt8buf5+XQ3797nJL+5vIpYVe9/6XN/+IIe6UBxBFShJzeIOE=
Question
1.2
bvHOe48/6gHR6Az4DG6AZTTJcCNfugmFG2OQSchn837Gp5zjwNeilKqgv46KYuwuU8cgaO0q5q/6tevSnwlQm4r91G1JzA/6GnCaDl/QQ540L6hfixyAmApea80ObGJWgdNbdl813Y3M5nouK+Cza0W456U10JU6S2U7kNzSmDdo/IlOxweHbBCymDDHB2NdqEM2VJKQWL2MTjVSvJVsnkojUCnhPTils0IghdMh6J8zxND4X36/GjnIEWTiwo6Lj3pCb1JV2wJyMYGZC1WANhuSIIbb600zK2gQ3KwYkLwSlDukYfioFNv7KM59O2IBphIzi6F3cSYdHBlg2dloC/yolBIxuNkTdUP6tYHBMrHRGWx87fhTl/YvUwa2ak8p5fc/AlcXSmM/7/kIDu8JIjzKF0e+lgd9k0LtW91nVhxYMkpJza4biT1Dh9CrKkjsl6/bb3XfunGhK+sgqOI3UAmhEfiOPPm1/7ua+aE9gWJN2bmykyHkHxxJc2c//6wg/uIQVxteG4WIktFJLqcYGtDdI3vJWNELxoE3yPYymmPzox1Pn0MYgcXFCxx/0UxNJOy+ozfxpXcLAymnLBubwcVDK1uMEdCdEfEzV5K24SfK/s6/zYqD1jjO9jGlo1fT0nYIHf9m3xdj7PB0rB3tj34PifDhcZoAdkkw/Fb08RArx9Y3gW+WmSHPnF2wkzHj8ZRQln/go2IyUxPuhuO8/eyW06Gpj7Rnqaau+oXhq82cweMwo6Cgrnq+dXogH73tAdJGUvFZ043LagAg4ee2TEAbPOw0oZgEuBOwC7EvsmNZma/BoNVB4ErX8EAJxIBddKT8k3mQdMu/khpVDzdTK0nLSyUyz6jluuVRw9sW67WL0Cl1xXo9zjQJ8/VIve9bn07JXIy9fuVMMC1WZKg4rOTwsTeS89ASnBpG8dgb4NFqsXVdz2UE8HvFV+vyIC0Rqj1cGSTzX4DVO3I/mxbZSQ1KA9Ig34180UflEa6Q6piTxAKRhxOOwiZtD2YLaK86RZnAiHuB0djRPZbEo3vK4mUlSGsGAtXGcXxQECjfO6p789XLPWZvJyJ6Xj/ukon+5e1skuqwpRZWPBgqUcJkL6Dia1NQ9y8g/hYdjn+Vs2PBh+PgmPHKXCGojvaZ/Z1JznDb/uIK8esAyt/nDs1gJEIRSSFzrOH8gWrIKyIKhgW9ha8lWYi8it1nYr13u9mq4RsCUBdsdBN4WWzdpn6ZVdBdJ+PZw8Jxf5m/LJEfNzFMNjIuaUtYxdhtG1/h20HWgnhiRbn1sX7m2uMEYJisIFzrVPLazHgm4lhpuc7IG5hBo2Ohhyyg4Cjdv6iw7+eic5tv0BybKYq6o3CyW6ANIAmy9oTx4gKk7cc5iBm6IVerWjMRFIg7mBA+TW+5jVOJp/MHKit5ud/2SeZoJ9KLFN2iFXYUySBP7zg8UmmlHg7GR2rz6Sa3PliVTBp2lhJZaShDYg7RrqscaOqIddoTcGv1za5vaz60fWwhR0KTwUtdc0Q3YMYt0Kr83EGXqZWi9S/ibCVoCBHrZy2T8egZHROW+dVRl1vEq7o8vno3h/wwk/v//KeFBGG5cdMY4CVrmg2S0ohTV37cMXmqu4QG6vizwUXlfoBs0QXqQIrs5HsbO8fME7nfX6jH/aJ7qOCtUSn+UINQogVPpp/Qse74viajU89bMdnpAAKL62YKqbg/5y9eef0v/+u+DvPGYlJ8PCO+r38O3IPCwt5IEfrV7qmUdj7VnB4/trh4bp9ETYN92wgX
Question
1.3
kYkgIaTWC/0d4k5oFqM2ZX6VT39hfiRnPLGHQPhi+4oIFRkJ4cdmsyosJPF3VNIfuqLHNZJqIzduh+ceNONOZPBnuCTQYThIUJyRC5RiYQOPize1poCiuoCpRY/i7k5GJtCg17TaaJrRFN3FW9aE/6fY3hq+WY/QW3p0MDgmRsafDWSlkINDel3LMJbJuFYv5Tok/8JV2k+mJpUcflFOkXbr1UIQZhrRwjX7F1mEBoj7H7aZN0RVrixwFDAlq4HJnvxuYi3Kuvg1IqxkFuFz4g8TkKWIHQ1TX5Jd0hXqT8c7eY2m72c26jiXzWu3vuEfwCXjAqwcJJmNqIiCGoqCwq0Z50cN6MvJAFUS7vGB/Ta+RF8VTVsdXd648UAlN8hW8hyaD38d1xTKqIPMSeaeN0fkmMZj0MZ4WsVETJ0kKwjt3ZRfV8wsUOznMszLYcLHKm1MyqoQghd2P2Tst80XE4nDFv1Jj6kuUUmeLtwv+JmGL18KgDLzx5zC2lGX60J7D4bw6u4JQWbt9UVuz4o4ixPorefHqe/2g+PWfVbM5VSHtLg5fbRQLCnE/J/x7DtUGncK4gy0Mv+swiWA7TEvAAFRUrAnsdhJoZnsgn8iJ/M5AGiHp6muSKh3O1XrxfaCvgsrvHMgdMfzbUBDzGevu96UPcjZguFVmyFNzgYupJ7hJN79ab3645BPHL8sf6DwXc4Yu1D5AkyaQBXBOUDGHLvRUnNXv18v/JLF//2lPGD8Ujyw9SlTFMOR4PPygyZL4bMWkfK16HiNJRSXHBrJbL7Jywb1j1RU41AG9o0SzgQlpaCEiEFkzd4Ar481yT0E4Wu8kb6utJrIxU2IYiocTFKoUEeya+LdgifPtPHwnPnZnWma+im/OFwVOtFG3ZbIp0lg3txoFc90r1r3D2WwIkfG5h7Eg7yQBY5XLCOZNql/W1JIm1TxOz5Tn3rC0rvubDTkxdTI8Gcg/9Ks07aAtyEMXJLlrzAYCNanvONT/zB2ZxTb8/PUKDvyBQtEAMXIQAGwNJe3pN0X/Q64L9k1n8szTpidT+nzvmz8jkAlhGoE8wq0itehdN9ZPvDKu5Yi98PAs2RstHgkI9+1kz9/RsRPU68M7hcL075Iar6nafmLPb0Ne5MszJjEkdvc8yqt6voW+uFX/Dd6DpetL2ZqSEMEumUDSN0qSRuYyto3UsMXgpXGN6wwKyb2igVHvTQ+NLu+2BxZAMQSMdFT6tO4HkfA/cbN/MEQlGrzBLH1ps47OQPI9gKRAzXWWD+yQ2uWzZnfBAahWgCbzbq0baejTHYvgFHh3YhIbT17VdHY/3jMw5QKUs/AvLRfNnfXBPUWuSsdCmCaX9FCWBcYxP7JzzfdmpMLpy/XJx8PbRG1GUA84EH5FN/pBmjqsXunTBEswD3WorCmB+NQ7QRLQv7pOf77rr43KZ19lM3UwI05XYS3LAX1wuzhtJYbv5tdKD1nTV2Mkrz0A6931kvzp7E6FHCHNoH+cBFw2pF5PoHFLhX4Xc7eSPd4Dm32eDgV0goYnBhQpfPL7oK68N27lJcdIJB+7LWHlWJkHuYZOuibb98JD4JN3oqiKM3cxSo9ZPwqb/b9JuvztOmeFA+Lb0ofe8Jmij0r8StcaPIjbq3k4c9c7KJrW6yM/csZm3F9wKvhhpHeGedbf2tNmkkurOdFL6BgslABUW5Mv/I1I1fKzqq4lmu3GpSklMgoTDV6ES1Nq5uIA0B21oVliP2rv2YnIXHNLyCoZbiQvgqM5TzNmeyi+SQf4kZu6/VBJJ3Y/QjI5mmjCCHix1izvUMj664fQF5Dzc+0n8LiTI774PUJFFJ9HvpTa2X9Xz+PSjKg4oQ4WrSuWdpY/6reiRXb+4rCJ2QMUas6xcHiq3ulBPtrTrvePR1u+o63gMNmfNdojNEFbahWYj/ZlUNMGisZvbaP2/Zshgcsrt45MB+2N3JoeG4W2fv/SrfNkNRe9cPwOBQ1FL8QOYgyS4LS5JsrorhV1Y1LrDlwBGBBG1g6vQbGriKm0nqIMbJM1Y7aUE0k0sSRYyreh4rcTnVhu9F6KJ05J00VoHTfNjorBsZx50FBPR2uy/bqdJAtjOb/jw8EBX99lYS9I1rIvcEstL1ReofTjDljuIrtqUuaOkfd77qXtQvdlwYaQhOAJKoxPMdddfIDICjYabtYdVID5+z8JReXtnmpAGiKFEHpoOPhsp3tKr1X13RRZyP9NjeWlc6dtBjW885dHL26XbwjrBJ08BZRk7AQSnLXjHvAwOCufiuiuCmvuYiY12ji6q1pD7GoGz6KHsW8z2kl/nXzKlXeRSjMU3EeOUia4TMGIVu3vDViSIoMmlqiqOjqufDTeMXnvdcClk6CvHO6OAbJvEEeJ/Ln1wmPjBQEfpTIWwULYk7Chbxjh5XWThaWmtFz8LmnqNyhrq7eoVSByLzHmpYZi3812VcBQCFOXPP1kM3cdHAEkq1QuDwoeWiHE0xzBSqdpkHLsKxtLdc6N+Uv/4MjJDLWQQl6PRNQeCdSODnx3+qHxoe3PZ4YPi777NnRWAc8Ip/eqa+dUhSrI8HQamV2jXB2N4Tj5c1cw7f/5sUyQkxp2bHhnemarA+Z15UGdre7W5nWCnLR/6z1vceQpPeU3YPCBl8YmvrVdqHXWsiOd37HF8bcpMkS2vKLwngk/cvaXx0UKDjIplpZqWG0LJNBLYwBRYWkElNhSsPSeS827dTff3F2bxKd69pKfY386cW7uBpywsC07q8BAzye6RFTc3PjxJEVnR2fgGO5eWpFjOpqdK6QvAvyQ4nEJgaF+TKTi2X2tdzqB7PVQxxHtIjaofuiXY0y0WmCbYWoRuGdx9kvhrTzzF6GikZ5lYpoMdwEZj/9KBehPuPyB9KaGtjboPLng+HoJUSzwVEgSWPq1AbwfZhP7PewRJhcyG/O7Yv6Rmg/0gu1tRjNhDXT7fTYZxA22WcrxN7ocm6bYY0TR87K3tTrwym4fGI2rAgd9TehPV7xPI7v+s7nZKHnoFv8ZR234kahezKYAXSRS0tz9YLSkDyF82s1Bi8ZVFJFcNBcD9QXDoNqQc1Ys7Wp6Rz6vspz1FGOVilIhZS+PTH0zuDjKUa83kB/tiLB2KSYBKYzEg94LLyYAdkBuM6D8zaWyogxzT7aXzTYO6wLMYaoFDE0W8uuUhfEI8+S+AXa2tDcywM3uBITXEX4la/17FMqJax9PY32ndjPF4jWGuV71HVdizWC/AJJbrrS+lM5QOdD5Dc+wKAVPWtzLCD4i+yB2zjse/EuycaAEjDduImlDxpLlkY0M3LU1CLToMJutK0F9x3WJfaibKZv/v8t7rFLCryAdxSgGMwSISDm4GPbtUdHpBTcZhF928bo2DcaDdAY/ZBAStCqcZocc58101X5m6xr4atSplIruProMU2XUHzck09kc/2WDCaKSE/h6Npij8MAvB2BPeiH1ySnPQoPskFBwrvxRk2oLRJRZ89JadbxzBxRwHvBGmrEm6XxkbDWDaeOi9ehTMeRuMKrG3nAQrETtHavR2C4+A5MTMDlkz7wUPO+PjcPVrosouGdQN8gUZZ0nTTTuB4ljbbecNrflnvZaDvCH4j0Rh7uxlG+9FjuXuFMbyD3midZAkKN62WuqyZ7vaUaSbbd25PFv4huRxXNwj/7jiShrP3jDHELZDnXOjAbErqJNMPaS/hvYkbw3qz4LAnLPuxrgTXMAtBp5YOJ2rphOX3i9x26EYt8+y9k52GpVREW2sujmPomQ2fatB6uqCx9EC3bE93l0SI+42KvbOiGYGEe4CNVZeRoKWVNRPr6y0RBJhNc9by9Z3ZlZMSB70vGyWaqnJVew0O3WE7eRVce9OYLbEcRXdQJr6YGzTS+2qTDhn8dLdbKg/h5xn3bjvm1mUw3zSSZvjYE3ifk7S/8uxq7SMB/X9Xm7jVvbBmKo7iLdMJyO38GBnm52AgAUgTauyJ8WDy7D6Tp83sOn7sS6VqaaecxcaVayuvL2N9RnJm8fZqlmSwNM+rwpXYaBAxbhUdfqs29VgJNWVnJ1DyhUIVT7c1fEZ4KZyzbSL3UL7gvGoz1SV3JjOB/qZYKajOvZSC0lVIZRPDXRtQ6KIPKathkQ2pd7pJfAHa55pujybFPsfYVLsMJsDYL/z1l35YRdnO+pW2L9xwgy5VJICnpnIxGBIQ8CaA/ZD1AXa/iBT3YZ6ID0FFQxpSu1Gtk89A4B6zZsrmlP17vQQlpyx2UAtjt4hma1bgaN3/gbJsr7Hrtmw6v3jbxsJiEGdu7fcunNpgIqpJg/uSdqILbDPiKPymVACQUeaXeFer8/uKVVRnQsf3XpoI+7wfZEeaBHGWEHSZgyWtRwKKdrVoJjnPiOxMjMZ93zND4C4nG8fgcsMx5MsX1VtSl9yt3s7T9Y0NXU0//polhBD6E07E+Gh9PU9cNloan+qlOuxThsG1fzWbgA5qBaeUI4NyXyA0pVZ5C39fiABx542zWCpRQ5N0T7ERzXpG4YRE0+OpCPUKW2AczZmFGla1supNPgs5tXOyhYu9s8sXf/HlnljNwp/BDUER7FDgo/7zaCXdF0PCECmB9wudSLvvtAJ7s7VVWtxc8x3zYWYs2Akwgun5gRlrhjUeW9ylzYS30TylXxKoyHLVEM71HYpMsM8/HIxrLM+UdBS5k7kBU4MpxjIoJs/04K0wRILETz6IRv1ZWfgMB8Hrdq5mA/gC0VgXZTvrLZlKmTic93pU15FA1B+4mrFITqRXYvNCFI5Pxms11zu058IZ8wLtwHbugPqbndJhoZI0Xnait620nrPACnGJJeENsTXw2zMBrF7OL7fbh0OQrzFMyq25mMn7nIq+Xh1dceV/cXrElnHCsnyROvX1JujAu2vw75KNiw8l7KPizBgzQmU8P4GIMBZyoehuDl6Z+1ntOMq6Bxcc+BKc2LNhmkweP8zIVCRwW0AuiHEv0PI0u6UPLpuN0k2nbovL4ozyETCwelQvxkkyTi+PlMbS5CicwOs4wGQhv4Ok3Qik1QZpwr4b/i+ytbOf0rTzf2fNXcloNFDRbSvgJCkqFNTnJ9hloo4W+4ZUzqQ9pnbCRhr9f69OmEQf7DDiYwZtgvLmAJ9yF+/SzWBIesWjyV5IEJC7xRTIZxz2V8hXxm3R9v8F3I1dcI5n0rvQj/tgKGR84wNfpmHyBXBmoU63MDwRGzEED6EUKpcHxiIM9U3XYJrvGaoqehG4aHOf2JturD15hGfE5AT29244JUCWnQPnnB/OIgDsMl01Hbcfx6nd3j/8vPylM6o5uIKh+UY7LKtT0hsleKtDSSS/60UI+C49OmzsSKcNTrlnEA4NLA1n1QYwZqxKxs3LWasuOHJx2dT4kudA9IXU3lO1Ka9bxtEh3VGZ4+bd3lbfqiOzL2I6uZdKDrmaDdDYlU44Ll1fpE5GHhkJyRbW7aSQi5pI3wnbFpbZc6YtAC8XM9RKBkTeAW/xCGiihmBkc7NwdpNAzn5+WgEXEmtW/hjxPV0Uh0jbFATZMcTB9kK9r3wKW6RubsykL/Wd7IYepVPpWMS86xlKzkWI8o2Otii6eDEp/+PtHlVuKy5J7I6g2eMpL7n/XEgIdFtni0wc1mXsjKvvxKJnQvIWG1OeGuEOJWrqEe489jq8zgO3FfrA1os2irmRf9vFvOOrzF7AQxQaFKhGKjlP9rysCuyYvdcXWWSUxu6LiYdOPnZWDl7KPDLN4TDDdaWCnBjBcjFtbAOv968TjJvTD2btaLjAIeX2+EGgWX93sMPM8AwvBYRGCQvQdLbJhQHttBE6chj/uxk4Y+qVYQxgQ/4DDwxBS7Q51QJZtXyIITbNoMrQ=