3.3 The Endocrine System

3-6 How does the endocrine system transmit information and interact with the nervous system?

endocrine [EN-duh-krin] system the body’s “slow” chemical communication system; a set of glands that secrete hormones into the bloodstream.

hormones chemical messengers that are manufactured by the endocrine glands, travel through the bloodstream, and affect other tissues.

So far, we have focused on the body’s speedy electrochemical information system. Interconnected with your nervous system is a second communication system, the endocrine system (FIGURE 3.8 below). The endocrine system’s glands secrete another form of chemical messengers, hormones, which travel through the bloodstream and affect other tissues, including the brain. When hormones act on the brain, they influence our interest in sex, food, and aggression.

Some hormones are chemically identical to neurotransmitters (the chemical messengers that diffuse across a synapse and excite or inhibit an adjacent neuron). The endocrine system and nervous system are therefore close relatives: Both produce molecules that act on receptors elsewhere. Like many relatives, they also differ. The speedy nervous system zips messages from eyes to brain to hand in a fraction of a second. Endocrine messages trudge along in the bloodstream, taking several seconds or more to travel from the gland to the target tissue. If the nervous system transmits information with text-message speed, the endocrine system delivers an old-fashioned letter.

46

image
Figure 2.8: FIGURE 3.8 The endocrine system

Endocrine messages tend to outlast the effects of neural messages. That helps explain why upset feelings may linger beyond our awareness of what upset us. When this happens, it takes time for us to “simmer down.”

adrenal [ah-DREEN-el] glands a pair of endocrine glands that sit just above the kidneys and secrete hormones (epinephrine and norepinephrine) that help arouse the body in times of stress.

In a moment of danger, for example, the ANS orders the adrenal glands on top of the kidneys to release epinephrine and norepinephrine (also called adrenaline and noradrenaline). These hormones increase heart rate, blood pressure, and blood sugar, providing a surge of energy. When the emergency passes, the hormones—and the feelings—linger a while.

pituitary gland the endocrine system’s most influential gland. Under the influence of the hypothalamus, the pituitary regulates growth and controls other endocrine glands.

The most influential endocrine gland is the pituitary gland, a pea-sized structure located in the core of the brain, where it is controlled by an adjacent brain area, the hypothalamus (more on that shortly). Among the hormones released by the pituitary is a growth hormone that stimulates physical development. Another is oxytocin, which enables contractions associated with birthing, milk flow during nursing, and orgasm. Oxytocin also promotes pair bonding, group cohesion, and social trust (De Dreu et al., 2010; Zak, 2012). During a laboratory game, those given a nasal squirt of oxytocin rather than a placebo were more likely to trust strangers with their money and with confidential information (Kosfeld et al., 2005; Mikolajczak et al., 2010).

Pituitary secretions also direct other endocrine glands to release their hormones. The pituitary, then, is a master gland (whose own master is the hypothalamus). For example, under the brain’s influence, the pituitary triggers your sex glands to release sex hormones. These in turn influence your brain and behavior (Goetz et al., 2014).

This feedback system (brain → pituitary → other glands → hormones → body and brain) reveals the intimate connection of the nervous and endocrine systems. The nervous system directs endocrine secretions, which then affect the nervous system. Conducting and coordinating this whole electrochemical orchestra is that maestro we call the brain.

RETRIEVE IT

Question

l+lIq9At5iI0nqMylKSBImztxElBFLFr7eKxeBDZg4w6Wo15+hFiRW5G+Ds+JA7b7BM1qvACikg9JQiQu5b35Q==
ANSWER: Responding to signals from the hypothalamus, the pituitary releases hormones that trigger other endocrine glands to secrete hormones, which in turn influence brain and behavior.

Question

I8mdYF+MDq8ruzqy274MS+JaE0UXUcRfiNbTP3SokFb+t5x+7ARrob1b8k4F1ZBBqvMEmmqI4zQRW4YvlIGPqHwVWef5tCgcpyMCFQ==
ANSWER: Both of these communication systems produce chemical molecules that act on the body's receptors to influence our behavior and emotions. The endocrine system, which secretes hormones into the bloodstream, delivers its messages much more slowly than the speedy nervous system, and the effects of the endocrine system's messages tend to linger much longer than those of the nervous system.