Chapter 1. Figure It Out 3.1

1.1 Screen 1 of 3

true

The demand and supply curves for newspapers in a Midwestern city are given by
QD = 152 - 20P
QS = 188P - 4
where Q is measured in thousands of newspapers per day and P in dollars per newspaper.

Question

Find the equilibrium price and quantity.

The equilibrium price is YlEhhDF7QkG2e1SO/3YJWZOg/eeqG3Ir dollars.

The equilibrium quantity is hUHdogJyrkg= thousand newspapers.

The equilibrium price equates quantity demanded (152 – 20P) and quantity supplied (188P – 4). A price of $0.75 results in a quantity demanded of 137 thousand newspapers; that price also results in a quantity supplied of 137 thousand newspapers. For further review, see section “Market Equilibrium”.

1.2 Screen 2 of 3

Question

FHiXAdVERuCxmYQGwuBfAHt6Onpw/vm6/MUUiWdI+vKqq8Rf7YNSXdgnww/PTSiIyGbtI21eoq4w5jFK3kemZvsPwDqkOFkDDTYAh5RhKTTl5AdRB+ejqRtIox1WhcqMPnwBHc8YqNpVGGi2+ZFLqrLPKeNnE4n6K35V0syx8+1oDQsfJWic0X11Jlb1k8eDGuj/MNbykxsr6nG/izabaxz5qOpE9JI3PEXt5maqTF1nuidVgD0IjR+sljvsXn5a08ccGBK7ZmQJebuvvYVZGlnhokO+M2ZAKNIZVI5zNMtIrXGOh6uXOll3UCtpWYrCH50juRoncWaUnA1wfvGNR96J+6EPw2cZttNaVVuG/66Ln3TsJ0EdvdWbE3PFk4gvl0cRNiru2zBukbFoS7Cea/Qzdh7MEYsp4FO+/SVi99ZnIZj7MW4B/oHa2JftTb3vOvrYldJRU7dC3qYpIcw53i1E6G3BB5dwkWu12Jhi3XUk0wWIboxbvKBLAlRjG35W9OLHiNgA8mo8fskapln0TD70N0oX0flHn6To0yfJPw3qZFJ0zNNxc7zP081G05sh3BGo3N/O08cIh7+gcEvCgyzyOu6Z7u7ZgpAWMjmMbtY2t46eyF+CHVn383ykd+L/k1s9swjFe6BsAluW2+/YJxdN9dbB7eAfNp5QgsxikiROw/rTQ7kV8S6uYPVlEC6KEs0mckR2CebOBi/RXguy4GfMpnkcLXMFRcrGmDbU+LgYVESgswzJUxgoDZ0PS4SO/kdT68PHBXa+q3QpNd7DpKzxBTFp9tSf8NKaM0RnPXe+s8toAZO0auCbkzH+uQNU2xOrqwc9aYJlGCZlMv7kckxEN9Fpx1y0yIBrazr6tSzjuDrd/j95dc7+EachaeBuMHV08q7UQp2RZd7eOec4gqNZBmi1KSk5mbCFZnmtqjJ90h1vu8yu1Ex3AKaUGZmVnEs8Sk8Ie4E5L4jU8l/411imfV3ZbR6xWyAUInxGe8pWKrQW35h6dX5I1RNipk+C+1NJnokg/30i9j7Y6Fv+ok3UybTrHJhS3wg49tROQWDrcqOC5+rv5506qRlxi8SFHyTmEMG5uOAm18Ofbwb2VB93d6jljzeByQ0cqNahQeMMK4XcycQcutKbwYl0Dn9t+uhhqgMzPq1pB47Wtz+4OZEVIM7dfXXTOP3ATjcM+DvAGV1a1sIrglbMDXhU1NKvAeHlLZKqQyAALhLafizQEdeTwW+r015s8i19ow1fc/pgcawDaufgQs4ISPsvFaZyFTp5ZD87ARetHbPz6pQ/3Xdgc9fNu/huIqQb372kcL80YDBJVn9qCL+aGOdk5Wh13OVpysccfyvOK86FOw+be+3jC6QX0pu48DUG2+DtohyTUO3OurL8XZSeWm3mkjglF1GMkDkhJT9Nve+aMasBqwZftv0SrV22PjfHSoOZ4ksxR5W4BzENcsOdW6KkiL05CgpIeZZlAHPTPSGybRilbqhxFV23Gh9L6C6AMC94ko+n1AJKdAyofqw414eOzIaYxv+yyJlEaCw9C9m+leDeeOgn9Y12ae4NSmBHlAaVJc5KqErcqmtq4FIsbPcc2Hd0ciH9vN9zOPUrpTQQ7QX0w9NyW7He3t81Ejvn5kBC5L6iQNn9JpxaAQxONXE7njkjD4NrIjxswg38mMU42dLcuor21rjgiZObQIupao/WprLrlYkuX0JWlw2t0yrZd3GtgQmfDH9O/vb27UmpZ5ZOpgcsyvAGPcXu4H0xerYMTye4C5vW0qDWoB1LLDDCDDgKNktQT6Vd9F71N6zwLfHpU8lCBRJeqmO0K71ET5eubXuztJI595xMK/m/3ZlgfcINjH2vOy91Xbf5nrbYgv32jtCfPBqAQoKUytkAz/VMlj6IfALaThHV34TCRIjjPhEYRJ+cYKdfRo5hMdnd5aoUxaLgt9nDwCuBjZLPRv0fs648Yk9RREVufu2cNcnwVrV/fNrApawPCzuB7DQTYb/KMJFvn3Jyeg9MvDbTzAgXuDWOUoyr1/q7RrJdbwjHF0mrlvNqz5Uz9I8MZn7zDwOoZxV/o7qKexrElE3mUYxt92O7/OspygiXsSeV5jLY234X

1.3 Screen 3 of 3

Question

roLK7uOyB+6sHxk8VyiuO6Sf2VpW/Bcg51FKGdUiG3dMD/8sAmQ/KP3mqodC6ZFHMkb81QeC+rhCf8rzGh2eMlr+ADS9kKscTpUwIis85TWaOwZIpQMYhEwwiaVF18jKUO2opJxGDPF8NK3fVrx7lmgyEd4asX19Hu8KlXoHPZtjiHQXtP2shHZHKVINn9Ho9Brf5v/Lj96dRCVvIBQkqZPQxAwTvWYwKTMwpad1nSuBsKOgTpcgPmWT2jBpwEYw0zJy3WQ6SCGvckhsK3fF+t+y6o4Oa2nvnDvRT780rkLxEAx+2yhLeNTQy5BZbqE8CZ33ArmtI90cD0f1wuyDeYMCmVc4gezeTpPKfM7cbo3N0kqMdIuxTI1OME/Hixkcygw+w39cJ5UhGqpJguSZoHSAkUtgXNXsQEK2Zg4H1+04+JcFXZDkJz/54g45WJSttb8KmhreKf3gFyYnw5T328KJFeC39p12angEevpGg8PAL7Q7UDDGiJgvMf4MuHcErS/uqA6CJuWY2LwBR66ME9+dB6BztCp0iw6JoOu7d8c7whXfbKjB+DZFGCwt0Efi/lpzX5jtMCgORl5vVK3X3sXJE2iNiT3+EmLvrJ/HwSkuxgqLiaMe/6he6PTUXpfsSrvTQvsNGQy+vZVaTB680lf2b4I5pPcuJXX+qEKbhUk/I65OeZi2L5eok+JnljsXXyOVGXtJyUnqBhIVT9M/n4f3QtRGEqMgkMLzqMCRinDBZjWsO92moLXUszOGmeNsEdSZwGnlgnNHACSsiSxJh2SZKwNJdaSH7fb8St0lChR1WAwcurOTZ3UqY4oxiWG6cKOnkvx+bOku/H0Vrab1AbMRh/HuX75l2AFhUYgdGq7CG7/xetSHTzf+48n9TbIvc2NN6Mlm0xFugAa/npLCanR2ehLXScNHCxn0awuZ+96BqLSb1au51F0oZ9Kyc83DfHzqLVE3oFzDgx05Y7scWEFT5M4Tsez4uEQIWM5MOgZJfw2jJJPvWsSaMhUEDQ108JhZjR/vOFhZo5aazs8+2F3tvviFaul3EkfksML4YQ9CJdC/hRpkVLXX7klkGfnnWhdKrnzLt1H1ZoRRO5p0w9Hhkkk1FUTgUrKftjjeavgbwWkxmEf//Sylw+VKQ8RQ/Z6aSmerHWlRaKZKYCXZFHmQCIYVjT6Cd49r6Dh9t0NL0bb7uTj+zPVxulEErCGfIpuf1L8FRODwYnA3lpMKem/kOjStt0dbpv74+x1vg1bmXBEim9WpbLgJFl3G45OH678A2GKnYWlExCNa7doJ1AQvwTwVHM/71FFf3A0wYOZMAkM4c549PeiNUcH4PPjxjbt8dmlYqyJWNG2B7BZ+kvrkwBkKJXKMHbEP6Z9rwJtSB2kP1nAtbCyAN9GNci4Tow4VZhMcSKhhn3rfZHdlK3dtHFMx40V6C/0Zn0BVPDGRjzN6PxQxKNN1V2lxdrEv2qSgY/ZTpJJHdoWaZhlz3lfnKILpilYNunAx8T8C2cPhQU9Nwtf7BvHDPYHcd9XbOq7QjaHUCKqeJKxiwJPkvRSMMpS2WbPvzsYm3W7SN0/faZpitvas6NeY2bf03A8ecxN4EajfQJOmxNSJBc71ecCsZFNGTc08LwNQjsoi5dZLDucKTWRE7oB3O25LXSDZQpYebJf3p9k1BQTxaaZJ6KFxhAw7wMCJy9K4SXoW5IWs3wHb42//WQhUDNFX+GUFbpHWP2/MHhP++EXqIvSCYdVz3TLZTraZtOqqJTXmYGs0xPECKydUliLAvEHqcPuotMeOivTIpAlHUbcVx1bsO6bmbdB44vmdiEt7NSlEAn80ChL/ZYz9nQDfDf5dWcxl36aMfxNvY9abyUdtShb1fea2iTopUdoW6IzABwuHzrwH+KYhFzGkyjl9R73hzlq+mMXOERWJCvOjl1cy++bylhhd3b7HxbBRnZy0KZotBMo35hfZ0u5ZkHXqTe39k/MCJwi5cx3kfQR631lJWtD7MgDP/Iuq4xthHgjvu1ZnNsGHYzKIrUWfdaD2li5xunlma3pIXZRV2NDc6OtS0Pp3OqJQWebafRTGc+5Xr5Z9CzyH3vgu+tAnjWs1uCefKmtQ