Chapter 3 Review

chapter 3Review

In this chapter, we have learned how ecosystems function by looking at how energy moves through an ecosystem and how matter cycles around an ecosystem. This energy and matter form the basis of the trophic groups that exist in ecosystems and they are responsible for the abundance of each group in nature. The typical movement of energy and matter can be altered by ecosystem disturbances, although the magnitude of the impact depends on the resistance of a particular ecosystem and its resilience after the disturbance.

Key Terms

Question

vle4qZ6j4YyfEIOUNaHvJVlU1ZivcXggCKsg7bJdyWdYgD+6mUbDd7c5pgyBgPbFJFo8igix6I3KjEsCdsCXGSEg0cfZXiwRQWkA9SQMxKrl8frQW18v0TGzydDSGGSLl2qM/n8ZWWhawSmsfq8ekFnIDB5/Orn6Znz6eroWP2fPAaQ4hp9THMu50XX8oIePlix2k4jV005PzzMKuwWxwnoB8rm3hdUxPBd52mmX/pL0M02RhZSuosWBDwEqULJhQMjpo2GusizIbSYDE6A3b+XoNBz66gSEf5yby4b6uO1EpAtrkPk4umKCPRvWwzXghxNFA5ze1i9r7rb+RmnH9FsGL75ZNtMvujRzKaaILe4vQ61jDiTLa++Mtx7A5D5hSmqOW7kNfsnP6lt5JIljlc5MPftcrTc3x+Qu6MOg3f3LhxlmHCwshPFVM3ReBvjNrEhCRvCmJhmH4N6Z0SQjYRqxXI75bkvx+5G2xxdDRYpYAvXVEszcj4WKmyWWYwwyNqKJrOLifYPfSUVK8lyQn3vvGTy2KnsGqFkLI0H/FL8/R1accn9xteLy8IyoA1UIL6JGkQz/JCM8HakHwEJFWADaK5I2Vo7iXbez9WWgfX9cXUyghnAd62XWxhfYe3rZqtbGoPZD47JB72GJhHXSQVf9OwkA6kFwZEiG6UmW+B9xeunhqYroVS8GEsCgxJ/2JIZW2Lg1lf5VY4+6USK2C4EKXJW4lIaDbSZNujnp5T09Z88AfB2N/y+IgloDR+oyAAOWAPfLXx9b/Ub4bvnJxoIAgcOgen3oj6yhc2AEjHQIFUJ3+WIA+sdFFnVueELNPI4uX+l4+l7I5nVv1KSnjuV9Wo0ZHkGk7W7X4TSrn1uY/FEwrE2cLWdr28s0XZm8XhfPU3BdyBjVKr7zQ+sXvVx/v0eTf1l6YVAmskU/wxxbGqx3qNMQqRrLLygYfyc/vPxMQB2PS8b41RgsjJMq6KFBt97EFdX93GC37pK1YLzwxApGmWNA1Hk+1WT0bYA1DYkTOhJIUeCnqkMd+fatnNeU/E1N3X+ocKAxfxV+4bLxLhvcMUeyRAEaAEHqN7zczUAbt9Tqfw1x1xP4VQqJZtq2mYXrjD2Pfh0QoddisTnj0g++50z6SJ/U9wzQFIyYXTqBlsx488E9QYEG501voCczR4BM0d9jUuDV0ESnbW5feVXKxdIF1YEi3D9YhtHPEw7I0DshqKIwkw1Z3gN0U0PcIk0y/qJFWlFvLq/3PXQQIKkTle/aRl1N0bkeHcQLwatPxAUFX2HCOc4rzlNK6ZyLJBmKJD9Kkv0sajnASx8kJBIkakqvo20kVDmR/kDdCfk7sKU3cZljFCjjB9p1zOKFhWfpGv8KHUOxduah7B/JoQq7y/hPrjIDExgn3mhVuHqfB5O+JJUrdS/gcDfl5w7yyIQfjoWxJ5fjES+yfz37nZPPRhOgjMPXOjdrcCcoyZbuK//7q47OyZ1iZkBgUNqnpaZSeaeBbahMnq2F5Squ8OyRm2RCuCvfogW7sKed5bbi6Ln5QhjI2HwuPubh3jrpP+Us8JJGmk+7C4lt9qRJbuaaW6wK33M/b/NN9Ek0QG18limUvv1LhuDxOv3SH5ChtOpdiLOnuU5SN5URFI/8AlZEOCI+vK/RbS1AfR+FunqAjUYdTtDlkEkVnKWhQfns98APL/JEwlUr+D8aOmP9m/8XGT6EhEO7VeU6tMHiQL6OO9Jqs1HZ+qv7C3xzfNKDabbr+DTK6DAGPYswI6dtslWfP466shF+jUl8Wb6bTyP6Tre8KFMZpY7BXPd5Scf9XVBWsAsE6insxNCMgQDt5KLPKeAUP1sEmdzifpxTg63cL2kpGxePv0/xL20AsQbtXxZZpv55JRTCCaampJtMpwOibZsk4jaJCgkiuktCpvRQvn4XZPEChucGCib1yKUDiMPoyayTbRPJLGe0JPyt6mJlUrxzggDYk4noizZPPoflmQDtYh+r36llzP/3ux2mPDq2NWM9o/mEYVeVZ1KCtucDAWYul0FbHN6zq4HWzKJbXnaZLrfi7kXVQpzamcq3bpitc18FJB4BItbJzUNgbvyuvrAuGyADRatvhsoezv/SdeIKotOddT4OS6bWdul4WZUNqc69+Oq4YKRozUpqeOXDpz9eqxoO4JlcwMBg+qlJt6/WYjw/89IeGE3eI7Ai0c8nZ5jH5NXqs33mMpgXH3c0eZCkSBwnLmyxVAZMAa0gf3iHofN4lBxoRoE4Erus+ssY0dEPxTONDkSrSHuHI6HAjRA67AcYrMshg5ndg4tVa2zEUy6BeDVIbSmDsbqQLBj7hYAOc28q+5Nmd5x5uESyOBZ0s0+bKkk4xNd9qI1E0/vErJ3slqU2psf1sdntHHQ+or5PncnOw5WbauTVWMECKLgLKx9FkzPVXaliDgRiEvOcJnt1CQhoizA/d93k4QbWUgdU70u0isjhrnBVzbIxPVEca3qEmOGuDmQpgiCtELchWFxarBHMPK+90OniN67kua9PrLMZO1kphy6uRJYhMEMH9qGFrZkG7WVL+qy0ohMPoFiNCxbj9cmtCpCkYm+uyaCImEmB19NxZgs142UnM8nkonFii+4oN4YaLBFcjZIikdMFtyEvuBavdpaRmKOUOyJPjB0yVMtye6RN8nK1EzSHAJMydKrWuzT7Rdxzzy4jJFXdvmtAghjKf4TFTKIK8laQPgZU7OhizmDIGdHNKSbXbedCMpDDuNVsnfbG6DAo7VuDd9H2PlIfr7owcW+Qp67qkHzTC8i0R4miBtnoThjfTTKw25GmY6DYI/rTSOZj894VX1ZKDrSPMtOnhVW450jAWhuEXkh0uQwtJJCdbHLgbJeQphPsHz2d+LXqgi2URXnZD88Nd0s7RDyQV1I2r2a1+c0DphdXJaOrTkcW6q/ucxrlfapj7c1IsvuXr5jISxbz0HMZqrs2zoPpkH134iFwzYS5fg76dQum0nrQvci3yxyV+ajtihA5vw2aGq/bguR12Ty2cYOLCG3i94BorRlrDd9Fw/iY0S4G37taqxqAWZCZkivdEbHyBe0e97zeKCexc770zvIS1Exnn7Kq9oqJC4jiB3qMI6+g64mH+UZcO3iBMRIINfDV5S3TKRikSyhRNQ1h4yoUDBNdE40oedASrR1ZCoVoAcJCZt5tXPBHmodph97n7MnW+hHRpaoVJqoZyW2VfqUoij45HbiYzDuXhIuDhjdBMj1DteIEEWEIcp1l/eRps96Et8+hwALQLOgLRSfOdJ9Ve+SxZkC+tpWKKMSPryaWSgE0S3JIoEXC21edBRuM/wZlADSvHpgZ0Efadd8XiRihYZPU7V/8AMvydTYEO28ODGfN8CTTy3skL1oftOuL43GTMmaX4TXGYa8HB4RcHhuLBOL/0cgfe3jykwln9m9QHIWlgndRWGO6R0tWjKPVDs38pxRSIx7jS+RhhlDNtCJbHGVMl2C4fPf5nnIOP+dTArWOk87NBAXh4jasUmSGsE7aQ86iaR+DnXviMABAkLYu4/TSP7pp5UsW+BFcBsX2D5QFPEn3cuCk9ne+lXn2D7p9AHUxHrp8BVOvgjlcfj1vbXeaeRtfa8Q5uePHTCLd4CiwC9AVJ1lFLXGAfVD4FKPdWQuB15b6l818pX/A3Kz2BLHW4apWIc6ke7LaxC3IbWafQAZe6GrvuhArc6r72uaUMcs8oLLcVK3Lc7gZNLX/+LzrwswHtQf1uhTsI5PbmOhyAtly8kOQ2VcsfZ7yDD5AkvFHuO9sd2ByBZAAgnkKsgRaWYHHPI6EtMOVsTfKUCvKhyDP1iS6FU4zP0setgoqP6s3aAKyoLTYwKdk5Co9oocnM3K5jNoxl9pQ1hwzTvmfp91Xnv+3BPKWE6JlSOtAZ0+RehoaHP0PvSuzk31Bd8yJgl/n3kCK9/uVlvgVAQ+oJDfNpUng5P7lzY6JO0OJy016LsikX5ufEGoyMx8opN3dsnVBb5DReHHUdS5O58KDyH3YVEcmkNDLd8YxXF5swv79dveXmPSkdhoM8e5GZ66nRkyY3SOyAPjqXIQD3Q/Mdqp6ZX+is2KoFZvmKph/3eTvAwHAMpf7HSwiQ+/CbATK1NwZ+l35IRDr+GbEuZl/5TwbnEc8nk1KgBRucAVpDe4EHOyAEF9LJKFKIsc/nuAhpUnFRoom8V78cJKdXtxIWjt8kw5AAlO2Ea4nHehwR19Z3zA02WrWUNywZAie5WZAw+VSDcX3/tmy68YqM4FcL/VCRGDev2HXANeEuVh/WRBgPub9OTAUxdcIfGBf2JHREKJe6fhrpF/nhTvrVMDb0iM4xvVX6SFqgIvrxbjjz+dVZP977cwKh/3BXBM6f2emYxrO7i/pb6v+nML+wQ/MGRCxdBkAinWK8TA0/w4n+Iu9iIkzHtA7Mo0kaOTcmvTI7Pa5kiUMV0JwivBAofHjbUN4vxYxvFu2JfNcXkHN51TMRt160ievmvKREtUcKHHlJy0WyuPeqX6dekeJ+s0LhMsJ+Q3EddQJKAD19Dc0HG/IeFtP6L18ky/UtnjjOoaRyL/iu1jrsg744p/OqbFZvm2KkGAxoXXhY3h9KpSb4YFMRh4zDnn1jGCtO6GCjohrQAXWaM4SYEeXdh3c5SVCfWiwPjXBZYXM8OgjutYdc0Qs7tXRvc8ij24krLII1Lnt33jiufiY8S4vKB8P+qcbhyfKWtX9ueU0CiNBqnVEZjhClUV2QkfA5CTDAEB2dOBNR2IQq0TKYiXwBEuBG0MkM2XK8VPwyU3ggp9Tpk3v9vJ5SHE6gGOLhEs52FR/8wUHrzkXfzqNycJ4VZIR9wYesnCh0Lxr5yWjJ/6qubPfkObKhPgm94qPpWTd/rbEkl/xY3XuOADJfU3bELb7hDPpxuDPQigp0K2uy2V9Gc3bBNmoqtXypDNy6Wy8QsgkmX0gjueok5lSMLGEHBNZ+vnqhOAMJY1raYobTJ9O8dJRQFhfyIBMrdmOD7GjJufc93Ob82Bf8HNURLP30ufQgUQCDSshTXUAQlljxBtSA63wAQw+W+8PuquoP/JvggfSVHPIEISiRpUow3l4OfQb2THkNns9eF/z1vjJmd7eU56blr2NY9CXuIeVr9EWxQduIYnPqJ96UjQlAjrDvsczeU58tW8DgumCbSN3on+vu3wCkTcenDuQ4K2etOahnka44DNiMK8RB/0alpAdT3ZcAv6OOfIYMmunTwqcqOuuRe2AIKgALq9UeiA9mdSJ/yCa0FHSq9otLKikqEGKkEy0iw7AExCw5T3DgIxYPWnT7M+o+O/kUcgHS+qW7NgqE6uqzMXjyXt0ewnbedrppzeEYzVk+eME9QWsG//yqi7F9tNZZ293W6ax7dl1g2RS3YVLflgl3DzVs/zCysNy5InP0L/49Xh0AAQI3lX9j5JiLhB2WKpLeQvn4DgcjLz/ptc783uOO0MLZuQYuzdJXXis8y/YluHPZxXS+++Z49yTuoCFRbR9DtlGVw0GBgJY6wDTNGvaxAIR5dw1St18u0b+wT9iwQ1U8qtJP+byp8N98ZcOTXuiS9FbaYSOtiaxoXrQVXZ4VcXFE/7zlRcixwImZKGM3gzFsRe67+BhDOwnxSnR6INm27p+iLZ0u89t1zjnGlKmi06fSdFgRlaUypFPr+qqlnj/X6TQjCGE1rs3+ym0IXmcrQuF9n4i9quoun1xIf2pGPWQ5H8zCmmk/FzAyxeOdCu4LzV/Jrs0JxmG9O4om1DFgFCzpoaLV48xWGG0lF6E9i0s/CZ3Nrtu+ravxMs9OjzHBxLXXoZo9Gh5FSCVIuL0VWOSv4IRzeebqDgDvreiJ79e/1ZsFfEI414A085GiK+hNLDwG2LlUBm65gh9vmYmmracLLkN5yHY+NGFLTQ5wFYDORlfDYMwm9nWlvViZphZ0iPeW/Arx9ubBXHsXhAW65oBMoSTIgXwsjIk0N+Pf+4oYls9sfiV12GqWejhlnqspRlk18f7AkQ+7sHgyfNBHDe1XZ5+jp6QNtelX6BPtlzbyqJ2fmMiyQZMtRB6MwqD8e/gPeiWAUMnsnXliyaUBKYGYSZ//2cgsWS0d/YjN8F3RS+B/OoPlz6JsxP7SLnBHxij2MU+DE9JmdYubmAA4QH40ugimZojzoTGBLelA8dKm/EeysogdG+BsnWMDf7SYGL+OJ9Zbp2agn6WYqr2Z9uTNPq3wD4z9QFW3gNzcvOayU4Nfrbw7dxb6qLzPXHBjbUuYyrwUQguBgW83qazqC+UEMJZs7eV9rXuINlYF8cIjIj+JHlmPpCLhxwCcdl9GzNOJ8dWAl3ePMF1musZ+BxL6u/YlCDEy2/FwwGrok06sM35SQFbcSr7i7RJZU7eEEPNfciizsV4pIjKRbindi0fLwE9+v32RI4+qC5CpYfsGCCtgoATOpGu7CeTEdH3TjkbmHewUF44wzGzhk2VM+mSqmKH160c5YkcmV1T2QFdPbutfgkQYygafMqLCgCbbet1DyRUXKZ/4I0cbi/ZZx2X3ewnjZxzhfLAQMbUiGBmDgIJZR8i8+AhiQFUgw5wGoEbUeva20YNDWFoN99VMZMSQeCnnw7Um/C/vRA44fYygpQp9+q5a4hjvyuBu2WBrIPvuNKc8xNRYjqsy1Kr5GwMfJLZWlQb+KBiHaHwYkYaG85qqEhddQE6dYfJ7Pc9tnjVWzmVpGOQqFtXthmHLvGM+n69s0HF1vzX4rzjCVGiE4lFKzvWZD2eniP/F0rWgydkOuNCPfd37SOeHXp4bS0aCTg/JliqrHB74dufxW31Wuf0UDAs/mQh+ae3AquPStZ6ZdMnHOqKgsJMd9y9GEwVOwmdQa/TcoeDSZZ4WDt9gB8b3Mv1PcvLv8JnYcUqKymE9TJNQ2QvTpyU8r6jTZG1xF/k/1H7ctwv2MQRgEskVFi2NfWFGnEHNuZMHgwuxHTDlSlqPOfNAF+Zo7ZGjrW8WqdPxMJwr+gFyAgmrKEqdmLTmYU5cxftbyy0HQPMddQSRBg2OT9J0PK7P17r8BGdecLQxprZfgqW78U9jofxczieilb64Qp8S54Oa2fL2ioiGf1xQVpLABRVsHQ/SOmFpSTNcJh4V6WHocz3XADENFeX/ndEma1iM7lFZr/uJNZpWb2erWP2Rbt6l/VirSEaUFQfX2RIK3hzuSaGg+XagY32h2OTo8ywxVvTpxrZCIg84wUejRaDWeDQpbN0ucR+bWXZ/iRGPvNAsOj58SHzlI2ElXHqvRWJrQ+ks5OkGybm6ge7vLTcSmxAw8iJN0hDffjFKY/cHawsSXEJFzGZ+ysKlpcSvZXTge8IVxs6XtQJ02CrBaaDu63eE5Ak1F9F1DjNAChM9iZKKPJLlQXYXmvJjKGEpBZ2hmjehXR8QGw/iwB+fm1MDTm2ihO/CfkXn7wdwIfdY2xDI7S/I4r+UuASs5jV6Q==

Learning Objectives Revisited

Module 6 The Movement of Energy

Module 7 The Movement of Matter

Module 8 Responses to Disturbances