Chapter 6 Review

chapter 6Review

Community ecology examines how species interactions help to determine the species that are present in a community. Different characteristics of populations affect their abundance and distribution including density-dependent and density-independent factors. Population growth models help us understand how populations increase and decrease over time. Species also have distinctive reproductive strategies and growth curves, which affect population size and characteristics. At the community level, major types of species interactions include competition, predation, parasitism, mutualism, and commensalism. Communities experience ecological succession. The species richness of a given community depends on latitude, elapsed time, habitat size, and habitat distance to other sources of species.

Key Terms

219

Question

9JGdxZjL3TQf4dkvvGMfTn7UmG21023HIXTyw8tEPsEvRm57nXJE2uyqNE8OQHrqF2uXUhTnlf/QqCmIzh2nnEECThVgUJ49gYxKRtwo3lb9GSwOW3rJ1wST3U3VALN34qswXLyWQCFjE7jwl5/reTdTMKchTSJEca2xGOJZ+b5FFJCVw60bdBjL/CM58crFYpKoqgyh/z4h7PwQw2nb6kzEF0mSZst3rWa11ztIw2f7XPXtrt6F88r9zBzU/IbBOjV9buLv265RSEuq9tkEKS/UhQZsd6rEYkZhlXOOFlZyTrGa9S1A6n8b6wQNgx1VvdmaZIlKZLqqssC6sX/TLRrrDjmAaKn9h9Xb1UjosBZVhkCENWufpIj+g9bpvhoqItR/ozWjEZp5dm/OMwNzwCA1rXHnMoOikS7sO1DHZW+49zYPtOjP4EpGw9iiJ80pfPl8k9k56dN0OUTLwCYoTS1snMmsw2TnYHXLpZlphxgM9kgyxnOrH/QgooK6CgEiGbUPB6scKGdXPlgDeIX97iEaxblYFWZjdPWLERsecYZCmqXQkEGCCZ/BpmO8dvjZY48T7KJG8CI2B1pdaZkzD74eVVJjXRwmBVCD5URMHaUNG/nNRGjvhRSTP+9Ep5UtNVKVsQ5g0jawTI5Eo0jQ1lT9ZHpXPI6jsaE25TE/l4hEjh2nJQ4mJ5wLqhSnL0s+8Z6wrWXXJNY4Fa8iP7y9nxVUQig7KIBG9q218WeTA2pFakKt5Z+AtHECYImQ6qE/q9rUER1zCo/SA1JPrrkoR5SVJVghlZUmm+YDEjCCp3NaSFG+D5+2T3b9ByPl9qOAHMEmhBjVs26D3Zs5SuZ5AphFinnXu3yvUdtj/2qYYLwmKRM96aofHPGc/Y7lDHPuU7ISXefkBXjaWZw0gdOqjIeaFvZaXszsOtbDnZnYdN7iITG6Yap0t93IGRWRRBC3K7cpX3KhW99h9cWhHExAjCZsSODVrxEhbENN5tjGAH/5jAJmBTHFzFu1rTfDyvWe8eY4OT+MlN4AWBI/YNuD3uW3b1Vkq2qn6o1AUxI/nuQPLYu/eMEyMvw++05JTnyc/+id0KK2EEjIohBEiu5dvkvYfJjY5u+FbLXsWHc7cv/xio5i1I45S2EDfCxA3kzv1pleb9jQb1+/htvBDmrlffRbJZAfubOOhgmPccxcOfuAoR9/OJfBHhcrmH5z2at7/HCA1t0HzBKfQJA0ykdDX8RV8vDtWuXuETCK8VsErPdJ4YXlm78GZfOb6w5wu0wXo8uv/gUGpB+bLfRaTZQiOhxOovQtxl7g0DNbZankZonJdCxj0rkJGYIvnWSfluI6rfwXdLFUqiilLiTv1DolgMR3V6Hqnme4LSSXjwwFirEdmr6eD2ycbGwo/DgZKbnnRqqZqSNRDgYh+TlJUdGQDxYzH77s65359GIUif6Kk8gC8wNbDvdShIw374adXPPS0pC0O2MnxAR3KzZ3LEqON7xgPSCvkIlwtfa5Bp3q6XPhw62qCDzSS3RkmbvmXo+Zn1By6SVyRaEjJtpL13CdRUAj6LuBuyWQx+hG7Pe8LoigwZvukfHjCv3AgosDbDmGfY7vCIVgvXt/SPyig4AJ9amD+B+sbplBzIX+PkrhmjgCPKkBYwVduNpyJsPZ41O+U+Z6/frvzAi2f1VCiRver2plDxwEGxHk38ZUgQcultz75TIcMxJxhbfaCDL+T12d+JBLcJcztU8BnT1nEuByopAklZTS/VgeyOO09vr38tValXon2QFzVkC4dHm2Keynbd2iWkrw7YXXEoyWo4Pqg6Gqzc1wrGCu+7Og///SEOg7v3nYClgswAUR/ZFYR0GK9KnkJFrPRMNxmhPDilkFkQ83l6YtMyA2LlbflENkYHMwCVdqv/jn6hy0t5DLmB4SJg4PiGf2r8aE4taGmp6ggvZAOMTCcoiVt3/t67TNmHZrTtxASBzthZSFLjTjBi32etxD3EYsjVa2PuqAyYWvPShPW04RtRh71/09x5bAa3bzS8v8zLJX0F0GwqPWbFVLrc0RrQ8JiEQibxjl9TSvH9MSJfOACZv4PI5QBwX7Zm4ZgIQtxoncwxDwk2ZJwt+vqQiDmB9aFOB9hRsN7hWyyq+jFGE22AGbTChXWMskmKB4/Yw6jRmv9XIyD1uGmsjSzGl3lU52tkUe8x4tik7sFXaNR3Z95GMoepiOkmkclwZZEQ+bMzowgLt+VNpDF54nP3mPFl6ttouBayzOJ5f81Q3NPBTApDwKvt9FT8DBn65DjKTYlotBU7HFnEDlfuJnh1PWLDhJN6v0wsd/GBTtGsfw7jJ044Shc7qEnkF5Q2Ju2vlsKI87c7pEJF0HLzw55kqNEenL/zami5c/FArmezvtFBe17elNwE3yAz1jywAaVxqKJaIYEL6RwJT1tKCOcchkoXJYX2AnMcZB3SMvC8ZTUcTqLgr5obCZ68q/Fe7KwG3wRu0VRV0903pGrPeuW8SHSNFrjEKvA7cvuuT5GJ52EsIJGpagFFaojt9oyjw4tEEVOC7jT+iYed4Q00m0s5tt4JqTdU2FOD4N3OJRh+89GRHoA3oRYVRI+NFHYe4vYCyyigazkrB1rtyEf2+MU2DqJ0BKljqmOE0KAeuxMfXq3pFecOkrKGbnr2ZMrLSKnAOaEg89AnpG1iIt1MKWCtSmkRvaLdUoeqwLXdPt2tG2tQ8SK+nC+UDVIbSSbDUPk6sPFGIgdhJwKOnVnyqtj5qIZC9F4BLKIQXma63g3OhZhniRCuCOuqwAlomaj17cX4v8hpadaS2rfBTn0dIDpgkppwt1Yr8G7aXs0YnEn3kzi9PSrf7wbJozq7mrjTAx+Qf9c6/XiJnGENzfBzputPsE0IPk5iXwfyD0f74Q7aMG8rxiLkkpnyyiZhts6KeYPtfcWHWqoF/BaUFoDLinwyXG0RLBk1EghI/f0muBNrFJn1ZRCnLnvSz6gy6BWzQfaOl/BllrXwGmy8Yu76MaEth4JJ0bsgl3TEcv/cvAWbcu/Ftv9EpQzdvGBNromuCvzLFsrJ8ITH3ixCONbzs2VAYhX5YChEnkae3mDILCJNbfbm5MwLvGMAFjvP7wm79+JsJUuKdWTSdb0SfSn+UYPRiwFH/BTpXVHX72WCAtv6Wgy2FJpveQT2hkHhzdzun4JlEppKxOuUv6MOHOAtIFEpcHN4U4e8378RfBpKt9WpuzdBj4cVM1Z6rPQxkOqQqZ4k/xd8DUcC9FA0xVIfpUFA9z9Rsj5R3QdpFZmfIzBPM/crx0fwrkjpG1OFvL10nKYh5MErEJNeYq5mpp60FI5NoI7STsIYZArRFDvdEXQUz8DVK/+kuRbzDuzmyiDPzfychLnJDeQxbFB9xMi5RRFKU45+8frjbqNbGfHQ23a4QsrmFuKCY2Im2EO1tKJo7/mRll6tpUZ4d8ndcPOAjbUjT+RY1x+Bp5ODH/oaoqMSwk60R8qd+FGXvOfOA4XajVl40FxKWlyznn8pKXBVbj0juZcjhBUv/DH5kEtxFPTmnyaxW4hKBXnjxutXRbMiV8u3aeAjiFJbOB3SNcVDqocPtqKK/j8owFIyY2aqbYMT2XbS84qSWofYhJ2vYjL+795rAHyD8jWMFuAmcAvunx1d+G+jWU+2Zk6NUup1/LdMFgdVG82Cg4kKbySlfMq97hsbDNx8IagW7mW8syILWClp4+WrQ/n8aW8RxjcHXmwJGt4UfJ8B1H6C1cWob99upDT8L22I48SNee3JZtgzkehAl1vEwpR0KGli6md7XM4rc1AxwHOI5Mdn6vxO/3OJeDmpPZNuXVz9Qd6cHL3OVUyx4jCDwGW0SYv8T+NA6Ss275fTRxWvnNm8el85JYZkZRJ5PhxJbaIwmlJh4C29OvNuq2f1Ue5nAXqcEAUPOygvkKSprAu2QpWN+XzbfkT+UnpT00V+GzHEo8zj0sVFHxekpKLSCO993wv7b5Y9VYnae7bS+TsNx89ZSkP0BJRPYQNGcM/k7c5IFJRY6ttIBo5NvdVKHlI4YBrfDR1d/ekc7cMHuhatZ+XgYg/3te4I7vMGSTql67XG3nfldLW//7GvjSI/JXQ7liM1JmhdGzcInrhULqR7IV75Crh1zWkEE2xR+LYWpaA+oYfL0JzN+Bp6LpwkwTI0xkssoZfu5c2FteZqEGhmUMSb7kgw/62Doy5NfrtvGXPV5ITyj4tmth+7sLE/C84tYPSo0szDNr+50EzyWUbhOfDCNiOHmskfjjrB3Tvt0BikwlQDXtzmW7H13AwaNkY43kiGGrSI+LChuOBLRUMwxRQ337pZRuuCO2i+N5xBBoLi5M0RFQV1xDcVgkjJBeSLqwZ5V4VPmbv5Zv2RokqH8QQsIXfMUw0HHFRD8NeMzGSjbqdmDjzAZQUYQNWJ92j4/f2UXLJTP+Tvbi8CTW//BlxyT4qvFdROCj9liBDcDGJ13IyRMyMP/F8kpJfrgn7zs1NNFbV0gpteYgXf+gLSWmByHqKsIByHpTAUR/q19n+vdbbLgoZdBOllet2eflV1KmW8eTsqUYx4wAQYUXpocQT5SJDHT+9SN9hQ28WgouQAPy89cNLVBU9aVsysG+cv6AJxTlM7Nn+v0ShOM/T0to69Rf2cxiTY89hmY1CsJJXRaHlUwGb4L+HWG9jiqrkvWwoheeQGiPEnN4o7jCC+ot4X3IWsmzQY9NE5iPt5lfD9NjfkQaanLiJQFGeNbKtgTb5EmzJTT1U2kqD57PBw6Up1tbCJe6dkgntozNokKLQmqz8/TWqKA0rggSZnCvu6unv4b+vvoFc7CXMND1rDZqZJoGjjEongdPyZRdQyUpcA4Zz+GAmsFkChfcjZJg1I3Zzbmxp4p08B+AXh550Ba1+e0C77PTh4BoHMqro5A86agssvcpOn/+UfunEPhPb6OGLrdQwMy9GcFVixIQj1Du/AuX8/uqy3jTZoyYLpVYVejp4gB1z74+cGP5voPvPP5v+GWL+a/mtZtgi/APNnbflPJNNwPx1TekR4W9T9ZL21q7HsPqIZNZOFClQ5XR/1pTrSzXnYEY3oAK93GQWsG3KX4EcMpTyG9Ii6v7UWx+06MNRjhAJkluxq38WOCjNthb8z7eRTINj6jSxxVk/t47j90BRGOcS4hssL5gsy4A5r9iRZohynDAceTg6GItI+GvZALXLz+XaYk3RLol9ZaLbC7CS9Tal7WzjIMxr8CZM0xnfEu7LQkl+MXw2jTAk1eT+3gwTDwkv5VQIDwo4FevXIe9CB4KuAHQsPBz580K3jBu1GmkqHgnnC6g14rPVuXiIrdgf5e7HIGTzb0iF/CK+5/zKIY7j4SsynTvoyOskp1nYZnt4qorRUS30ao3WHBS30cbppfbRMvxAwiQLh3f4PITSBRqMke9QGHsIgasj3Ix3kltzYdZrNbWpIWOE4T2RYwmw0NS9WHqzjSOdwtG3/Na1So/5G9xmsgIAhcO2oIVlm3cue9WylN9lvSsurQDQZTd4ZiuDtlaLAaGdvzO3rYIXTT7f+dkhuSShdOYFJ+kPLBGLy9SJCLdDsQGLwR0TCmaSR09SHAM2zHH2v/YXmwN+3lP1nDHZz2FtJhFJ4PwrhfFNZxDhfkWIdmFjKz9H40viYYFewpWOwq96BC1P4gxn5xVEGOykC0c2oek46Tnt3l0DBBGKaY6j74uIm8S231PnRUZ/lExeWDkv/+ZV4dmkqxmk89Z+RlisskaCiwL7mppYeQFDy8wYpKfD265pp/gAgKYF3BDgAPv5MZIkFzu4Z9+y0KA6cbC6dJ64r5rk85SFx2EkIpJKfSVj3zc4SxcnEICoarvGYavbeCswxqrNgIl/k7uyUepFATb9JkKGLeneYJZMWDLnB/z705jrCvcrKUBZQrMjnB+Nacv8IqZvMpB+UrFzkA5P4g4n/ZK6/CTe7jFbSgGGt1OzUYR+2a8+jTBrzf0L1vWk2Wzu2prFgKHqxRJCb6X57bNLctgaHcLAeXlywnVZA6gcEr9aLpswoMiO41hPbPo5Rbi6CQD7LkZc7hPHxatw7c9mwRN7hDZ5CIB18MTmFCtlZhdbQRIWgVTxuXVXBJaa2IP+QgThqEqOHzcPopgCU4ietHOSPwF5tc+m+W9NFG75chrwaLZ9PjMHaXUo5w27CrzHRwtrQdUnyJZkPgKrBKoPtMBJxFMmahFRIMs+tzIvmVnTpbgGHx1ZzBVem4IyxtoYQSx7FItUkOkbVRyX5vaJVq939sf8W9HulFnKU/fEbnQYVamGqJ4bL9LDdijN6xSP7Y/1aCNi0QCxtglEiSQuyx/pCZWDVg4WmjLV40yLOEupPucx2sKdO6U3I2u+GHTiGXkcTU4fNqYEjMABDrKjXZFOsaLiIdw2HT3V7GEAi9zGYwPlUP+pyj07PIlPwQWtUV9twY0oE/NHmm+bYavTe97+fWB1lVUoodXYGj52eevjuSSntNc7AvFYqpaIU62dxGOma6M8iw70wGgywqsiyPwbgOzqn94lrG4I9yL/DuWAiuFrRAxWD7FC8A9Ozqe7VSEGOwr9+KLLwhMK5hrKUEJpyozyaVy807kkuV6ucIhNVtlrK1N85ZAvxeu3R1rONONzNErjzi/nzRUVcGmmauSac5D8OW7fr5YFizWYo77Po7aSTTf8w8IcwjwyzIccuGKDuMHYSPBclZvvdtZzLciYJO3MspdKJNMD1ezdv2Frz2dlJxtkWV0Nl7VgMlX1CAWA0tXELgzl49AwIlTgkKwhbxVtStWekKuejTxvJoC3Tf5c7ircAiXD8hqjHsG8jmMNL4Yh5I52Q5SdXJSyvpcndCBf58XoegBLECAKz9t0bd/JSctKEaFvdOgFQy37DhY5SLo3ypNT2MVCK35wtMBG6Lhx9GRKCiBLcRlEwQhOo7W5iV5kabNOwahwZQFa5Wh8yQyGqAb04KZkLrclI70ZzfllCDyuhohD3MYx2/2FCCQ87Wni9hqwYL8jdsW38MoYH9eyCynyLZhdDFHM4CVfg8DHjmVYw2DvtZbcFp2ItNWOuFMS+d6HT0B0pSgxS9iUz5p1zXABS107sz7JcKWF/zdqIhK63qUXd5DsPU1F6DIhC686GQ3Bhej3P8o+7dVKiy0M+C2yPPSUVb6NEw0jv54r0Js+yVCOBQwd0HfqHI44J2281QMHIru/Flo7ZzHM7UWwnM8iPvnkH/KBC4sL/QoBiIFRZgqYW11U98wiPyV9Q2xFH28JCER5NZxxeOHeRNXn3xrA3/6rWEyHRpsdsWtOhW9gsSxcLTI1vDFbzgOCBEIabyOVG1Ke8XASExjzhlYUmCUxSrOGOusxwj/BdT6VLgw8iXydw+INFwBhZMIDa1OLoumI8FjgOp0dNH4ufSky0ZHADBzWDX9WloWTjsUeZuakI1BCn5wVutf5ZnbDjt3TGmaOXlX78+nTe53dFqGfRATJn+WlKwvSEo5g90PMy3mpOm8AKvaFwDgW0eNt/rRrxy/udNx14vTpKeCILZhrAHMqdMpTVHs/uqmpyIrhE4biOv4FRCj41xZLzaexVErFGfvjYPkDJfk/ANuWIzNBifA0ZydgHqTu2KLmhaWpF+SrKI1UZj+HsVXWb33hysmexPFFt6cfJUzvS5Ae51PfITtiM8bGWT1RA3OFTMmLUTXQ+71Q8h/TNb87/ZkKp92BS0aF8u7WRRJnp+9na4OVSqm+Hv8vxGdFm2bBCT01f+6TTEb4wJWexuVea5y6dVWMiKOuAi69Ryl5UWR/grhvqitoCAAPX1CpkJjscvEDOl7P3VEATy/clfKoxm39pSdiOD0tMzcosRwd6Y/4hPn4yxWFfbxsf+rJLHsuN6p8DwCwR9yM1Rgkhm9Ze+LGJK+cQe6M9ZWbraORJGgKEuzjri/1xCwKGNuvQ==

Learning Objectives Revisited

Module 18 The Abundance and Distribution of Populations

Module 19 Population Growth Models

Module 20 Community Ecology

Module 21 Community Succession