103
In the following exercises you may assume that the exponential, sine, and cosine functions are continuous and may freely use techniques from one-variable calculus, such as L’Hôpital’s rule.
Let \(f\colon\mathbb{R}^2 \to \mathbb{R}\) and suppose that \(\displaystyle\lim_{(x,y)\rightarrow(1,3)} f(x, y) =5\). What can you say about the value \(f(1,3)\)?
Let \(f\colon\mathbb{R}^2 \to \mathbb{R}\) is continuous and suppose that \(\lim_{(x,y)\rightarrow(1,3)} f(x, y) =5\). What can you say about the value \(f(1,3)\)?
Compute the limits:
Compute the following limits:
Compute the following limits:
Let \[ f(x,y)= \left\{ \begin{array}{cc} \frac{xy^3}{x^2+y^6} \, & \hbox{if } (x,y)\neq (0,0) \\ 0 \, & \hbox{if } (x,y)=(0,0). \\ \end{array} \right. \]
Let \(f(x, y, z)=\displaystyle \frac{e^{x+y}}{1+z^2}\). Compute \(\lim_{h \rightarrow 0}\frac{f(1, 2+h, 3)-f(1, 2, 3)}{h}\).
Compute the following limits if they exist:
Compute the following limits if they exist:
Compute the following limits if they exist:
Compute the following limits if they exist:
Compute the following limits if they exist:
Compute \({\rm limit}_{{\bf x}\to {\bf x}_0} f({\bf x})\), if it exists, for the following cases:
104
Let \(f(x, y, z)= \frac{1}{x^2+y^2+z^2-1}\). Describe geometrically the set in \(\mathbb{R}^3\) where \(f\) fails to be continuous.
Where is the function \(f(x, y)=\frac{1}{x^2+y^2}\) continuous?
Let \(A= \left[ \begin{array}{cc} 1 & 2 \\ 3 & 4 \\ \end{array} \right]\).
Find \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} (3x^2+3y^2)\log (x^2+y^2)\). (HINT: Use polar coordinates.)
Show that the subsets of the plane in Exercises 18–21 are open:
\(A=\{ (x,y) \mid -1<x<1,-1<y<1 \}\)
\(B=\{(x,y)\mid y > 0\}\)
\(C=\{(x,y)\mid 2 < x^2+y^2<4\}\)
\(D=\{(x,y)\mid x\not=0 \hbox{ and } y\not=0\}\)
Let \(A\subset {\mathbb R}^2\) be the open unit disk \(D_1(0,0)\) with the point \({\bf x}_0=(1,0)\) added, and let \(f\colon\, A\rightarrow {\mathbb R},{\bf x}\mapsto f({\bf x})\) be the constant function \(f({\bf x})=1\). Show that \({\rm limit}_{{\bf x}\to {\bf x}_0} f({\bf x})=1\).
If \(f\colon\, {\mathbb R}^n\rightarrow {\mathbb R}\) and \(g\colon\, {\mathbb R}^n\rightarrow {\mathbb R}\) are continuous, show that the functions \[ f^2 g\colon\, {\mathbb R}^n\rightarrow {\mathbb R},{\bf x}\mapsto[f({\bf x})]^2g({\bf x}) \] and \[ f^2+g\colon\, {\mathbb R}^n\rightarrow {\mathbb R},x\mapsto[f({\bf x})]^2+g({\bf x}) \] are continuous.
Using either \(\varepsilon\)’s and \(\delta\)’s or spherical coordinates, show that \[ \displaystyle\mathop{\rm limit}_{(x,y,z)\,\rightarrow\, (0,0,0)}\,\frac{xyz}{x^2+y^2+z^2}=0. \]
Use the \(\varepsilon\)-\(\delta\) formulation of limits to prove that \(x^2\rightarrow 4\) as \(x\rightarrow 2\). Give another proof using Theorem 3.
Suppose \({\bf x}\) and \({\bf y}\) are in \({\mathbb R}^n\) and \({\bf x}\not={\bf y}\). Show that there is a continuous function \(f\colon\, {\mathbb R}^n\rightarrow {\mathbb R}\) with \(f({\bf x})=1, f({\bf y})= 0\), and \(0\leq f({\bf z})\leq 1\) for every \({\bf z}\) in \({\mathbb R}^n\).
Let \(f\colon\, A\subset {\mathbb R}^n\rightarrow {\mathbb R}\) be given and let \({\bf x}_0\) be a boundary point of \(A\). We say that \({\rm limit}_{{\bf x}\rightarrow {\bf x}_0} f({\bf x})=\infty\) if for every \(N>0\) there is a \(\delta >0\) such that \(0< \| {\bf x} - {\bf x}_0 \| <\delta\) and \({\bf x}\in A\) implies \(f({\bf x})>N\).
Let \(b\in{\mathbb R}\) and \(f\colon\, {\mathbb R}\backslash [b]\rightarrow {\mathbb R}\) be a function. We write \({\rm limit}_{x\rightarrow b-}f(x)=L\) and say that \(L\) is the left-hand limit of \(f\) at \(b\) if for every \(\varepsilon >0\) there is a \(\delta > 0\) such that \(x<b\) and \(0<|x-b|<\delta\) implies \(|f(x)-L| <\varepsilon\).
Show that \(f\) is continuous at \({\bf x}_0\) if and only if \[ \mathop {\hbox{limit }}_{{\bf x}\rightarrow {\bf x}_0} \| f({\bf x})-f({\bf x}_0) \| =0. \]
Let \(f\colon\, A\subset {\mathbb R}^n\rightarrow {\mathbb R}^m\) satisfy \(\| f({\bf x})- f({\bf y}) \| \leq K \| {\bf x}-{\bf y} \| ^\alpha\) for all \({\bf x}\) and \({\bf y}\) in \(A\) for positive constants \(K\) and \(\alpha\). Show that \(f\) is continuous. (Such functions are called Hölder-continuous or, if \(\alpha=1\), Lipschitz-continuous.)
105
Show that \(f\colon \,{\mathbb R}^n\rightarrow {\mathbb R}^m\) is continuous at all points if and only if the inverse image of every open set is open.