Use the product rule to find the derivative \({\bf D}h\) of \(h(x,y,z) = f(x,y,z) \cdot g(x,y,z) \) where \(f(x,y,z)= xy+e^z\) and \(g(x,y,z)= x^2+y^2\).
A. |
B. |
C. |
D. |
E. |
Use the chain rule to find the derivative \(\displaystyle \frac{dh}{dt}\) of \(h(t) = f({\bf c}(t)) \) where \(f(x,y,z)= xe^{yz}\) and \({\bf c}(t)=(e^t,t,\sin t)\).
A. |
B. |
C. |
D. |
E. |
Let \(f(x,y) = (xy,x, y^3)\) and \(g(u,v)=(u^2+1,u-v^2)\). Calculate \({\bf D} (f\circ g)(1,1)\) using the chain rule.
A. |
B. |
C. |
D. |
E. |