Quiz for Comparative Analysis Two Views on Texas Independence
Quiz for Comparative Analysis: Two Views on Texas Independence
Document 10.2: Colonel William Travis, Appeal for Reinforcements, March 3, 1836
Document 10.3: Benjamin Lundy, The War in Texas, 1836
Choose the best answer for each question.
Question
10.6
mXTlB/32DdszTQW2aEWz0y103fySbVuYyEV6QH6lfTU15fWN1FHO7YI4SIyT9ynQaTJpRFnJQ9CHltg/oJk7vzxa2IcsQpVZp7hydeshd3i7pxdox/1NDgt2/aY1HemJU70YtdVqBf9n5e1mJsO9DKgEV6QE+GprSDCnuPl6Tev33hYwH+wjRsDnDfeIDNXVuYClbWMPKZI2oPQudeapkZA6l8RzTn7JJn9sfQSLE/8Zd9zK69XYwrOAB0PCqzdktyMMT64JI8LnUUCzAaVIVM0qOV5KgEybB52KXr2X2arM95ICv9/fXT2v75PhlXORs7kPcsO9ctrbyMTufSavQZVqEC4EBBSp5w3ZpuZto4eieD8RGANxOLOH/WZD49liqZe4LC1ey1km4YhjANBjvDA/jV5AHy0um6nyW1Jg9jGr2cgCDHEn83vLKINR1WzkzyeUCsmB7UZGmYGSwTuq4mM//ixZgHzr46EKhMnuIcBDbnOhYTterq2I6YpoxKdiW6YKjAPNFJjCmGBjUQbuLW7I/dU/0mqwnI2n8XoiuQyErsVunhFm/2G9SCe4Lb1i56VK6NMtdgV+Z02Ge9hvDpO4CqgXDT+JhF+cHIg8E87CIddpoVlEeVoMPEF3Xih6jg3mC5fuIwcj8g5ZK/Mmkb03vhuLCNmEmHSRFm9n5nYSxy6B3E48rZWEInz5z/IgpFV9pS4gZhT3wQRnQxdXmYj6J8Ec/vw9x9uQuYppSvDo8RQfSDTmrU6AzpzMkqmNeYOwwpDIWrsY5AhplcqCJ6vmY518K0jb11Elpao2zwAnLVnpnwmXJUXixwdNqDV9LDzWccrsYgWA+k1h2ynr+aPfnYhjLQSbGp4yNu3OyMyIirva4QcfrT+v7Ij57+wciRat3FvXEdbOkxsTgUBjAWSISc+cKSgUjiVgKVlGKmZqMd/yRHraEwhcfJAhdknR+YdIHyQB8/U6YNcUPkQsSKHI7djoS9s7KDRDgtFNgHLv8hfAa8JdFdaGNJ395W2S/s0+8nS7djFXr3axPG1mIdRj4BbFRDrmR6tIbbsCk+BSGS1AQemL6iDlMcOD4tYsJ/jNMW76tlNyyAX3Ml7Op0ltIIEZTqwLuq7ycGbYZ5UNB6SajxWkBnKhW3s4lsfK+D0j8KKSe5wbRBmozeVtBZ2SgNOw484yhPvl8ZHVYoxWZO9KWKgRhBhwCXkwR0PbHY5VKcfw7csJXdwH//7UkC2YVtrzONgu7x/ROVgQodpembzUOxhI6erI8HBGkuTgpRLyLUniH7cwZ/XJMO/Imj8NztekCvYFwGSRWyxg8HByZVGgMOQzjUliE4+whyScwIwESPUGXj3BcXYoy3OUBQBTbrclXnFt4+toUZvWW5SFpdUagtoZ1iw2dBpRKs8a2ErH5RLGF2QUAB56rdFYSAODtq9HTV7NfM/1cEyWVr/qka6/LsvhpRbDpUJRwyCamZooTaBWfK99DqUHyU/C+3nQkhg71DA+4+o9ulYvIjSX+SUNLo7QTBejxlB/cDR2IV/Nqd7E6MCIIkEJ2lQqcI8aAuv0LF4fP7fNQ8m/Q0SiaaEgTwJvkV9BBy0=
Question
10.7
SWbDFs+92lMAAy+r+vuwYjhMaySiqdE3wedNRH9lMSE8phHN6ao4Z7jD2Mt9Yv8qqsW52T4j3etgbMQP83/Q3cJ51xLFBk4eJsQhsCLZE77ZyyOYqCC7RKnqDT1wb47T0RidlHijMI1V4t5DIXp8/tPT2RrnCZlzpnEhi17IPP+PyaKu2pLNPrBl895/FzZ4F6l3voOjo/FXl7O1qHBmV6yIZMIW+dlvjSqrkswvAmRo3NPc4Eqn68GTRnbNZSnh/xcsWHQYQKDpNp3F0eHMWc7HN2ZuWMddUyyRmafWKonQCKI5l81bh9QSefqkcLsmjHrh1zRNewtQMqARXbpFI6sHlrto9bw1cakSqOodjf7JrCA/L83yHr+h7KqgS777Rf1qk14eW+3krYAC2xYj+u/mzRZP/Y92qj7VJy8cKPtEfFXfwT3ze/fhqH9uUzlM/ZjvYFp4FqLJ/vX3OlYaerxH69P2MulKJOmYysS8150WISGkLIfHVduVInNuLKklSGk9dfmoaei/99ONbmy5javROu5IfEROqApigPkaXb6RDI9yE2gPHoRhSocGlIkep7K3bsawOvTHqpmg6OZIqPK/zsqw8XZaCfWKDNs36qEezCbw/YzYB7nJBtyYj9cY0ec2G1NbAo6xpDcHuMzWS+ufsp3WBb2taZU/Aql9ERgRMHN5TdJJJ92z6EQUQgZjiZuAxOBi7U77eACc7o7At5xoYyQ1r2Se4f6wq2hPL4yLmYujaiqQgnRQ6ijj0XUFFvypCPAPmAFGPKfdg6lOH6XMEjEBZnBDB9UVmIwBV7Y83pFHqK6g89oyVbHZL4JfchPiY/NxLlWLXWv1mIwEMTqkPcW+CE0oahdXXo5vow+7qf8RARiUp3LGvT4blX3HPuW0og0o/RhfaSfm0sMJ9mXNOvpWr2Un/mnrAn3fttFUisn16a291V72JXTzi5vnIad/X1aUEvT15og1JfpmJWhNkpmJWNVjXFTKnme1xrGnUqwjK9Q1LSfFwRNRMOeUnZ30kOKOEqIYvtyXt7B2pVqo8WQ2cOeUGhQUx7y6BKZ6nbVYhXCBRZGAmK8nHzG/H30kr79Ady70LeWkiQa+FbrNrJ7yPrdlyihqzsAmgila8HfBl4SmrCGkZDV1gn7FA87OrBUioxfMvuZc0pkONeKMKF2RdJI9PFTbE7D3kknW2rLo/Zh+m/NwYNkht56ymPDaQCYgUse8/MNuuwJKekJQAFC7kKeCquUPGvnr22bAKRMG5/i7KVZa+tICXjg0moFbVorjU9HwZJjaKB3swlkQhT4=
Question
10.8
wEit3WxWyBrhjk9VfSvGQgw8Grzxe1dA1PZiKaUxmMFObk+jsZIcV9Rs4MV6EAKNYCJfg07E4x0EhwQ62tPgTIYJb/gzzSKAvCQjteu7ccrfhf/VNgStNh7VpGcMCd80iV1ErWa3BowdF/MobAi40wPuvZecrJ2sVLvqiSm9M9N64k82dJ43eVpbxDI5uhXsPV3e8ocSxz1rPDriiEWoff8pNohAgQjq8+XLRkEd+sMnqp/qqqmMFF4f0iZLG+8qG7ijET0sAinBKGcW2E1Ov8zWvRgG8I6mpNO6qHXAF1N7vtCt4xm6Ex3/Iq74jbp0LXAs6pPLuKisgAFPK7crxHaKwmgZrcxxlsMavUKFegLaqobIYapx5TneqeKvVnE4/+GrWuLeJLuY/W2oRV1uo45gRGIWp1TymhMPSg8bFHn4x8EOSezhlH8rgEY36KAD+LVr18BNK3rOdkCmCuPODQrum0ij49apTHIARMlEA4pewPFywWano40F7Saxg+ftMQ0VcW52c3g8JoPKhSc5pKow/8BP55+vS5m96rvHeAVJtm9ugDMfM8RYa0KGSyi94VFjnmH0M2oeM0BJUcyLDVKkz0RN3DXQvDg6S3RUf+CfnQGrzA0ta3ZySJGMpk9wXGfavPNBa+P3skDYB6bShVmI+8Xxz5Kqmcnj20WS8jtn+KeHWphAZQmyrBR+CpqQqaA/0zRB6iuhy+R05h/uZndp64N2+fg39s98fzO/UxgybZBJ1zYn1wzRX2bNJBPPmz6a9yLKKSbBzppllD+qpENOaqoFyv2td3dHn7RbjeiS7AxDaMErzn/kdhAFHqzgNg7NSMnqrWJEdlqQxFmDaNkjqxYUAKeUbZyQCB/yzl91QmtZT6aDDT2yWWTL2XG4HizCEMtBQS5HKsZjQ2++haFOZmyDjisNOVX/OrbzWnXi01geQqGYTYCvMS5KHQj8ix2wmCkDx9cOicNBvcU0HtnHS1r0+n3aBC5vw+a9Y5xtmvAkXfwPCvl4bH/TTZXYJ6E6lxZoEKM/YFrxKC4IIKnXIHlNrdYvIFJp4FqrmqwD3v6pbFWvY1SBD7mtwclagkCF7SqzzBjEFSvbEqhlN24Cs/cENQO5tINOjvz43PcMMg/sG+XaLPzr2joxPHTnaEqaXCPPBoerkHRKY+arIzCC794uh1byg8IVAEG2169nuiKrJH55Ki4N7kra8y9tM7HwKLtxi6uCpQYbo60jSnqoAlFN6dNx3lrrpr2q9u328VR61/eBHFgz6Ypbpe7wkGji5K7kOtcTfOvYEMx0LBTNFf/CGEfYuqr6b2o6fLBaDME2NIDoByezA0ErO/p4Dhf/pVs0Oflip8B4L+xlKbgpqPRfMfULBgf6Aw==
Question
10.9
3x9WXDWaZ+pABKyGaPt79chP2JNYlU3wjmRX8jvOs2kxro+yOHeMMQT4RfJcQdKDAabskphi3Y6w1V663lKKKyR9qjEm3+Ky0nYFu5rQsQ7YSvWzVo5Dde0l8YIdfPKW6fdLSeLAMUxdSyjOmVuQNSUi698+onDlczwTQ1aL7Udrjn1eYyMvyvFoTJy+uQQQhSUDSeQ696LaKtCY3avYpBIFmmsX2N3OESIeh18aatEqLbqHWSaM3k9t+wguCVtNsHXOHuCtmb/qGDk30FMNO5n2YyVO2C0u05crP8K1hoqDqOBfKOGGoYVUln6GcyvxuEFUuureh4ddBSRHl0RbRd/XFDMcYFOmJYS7xrEDPkqiAqCuf4md5a4/lg8x7HXJVW0RRbCdzEMmZtz9auz9C49IRMuLCRjZC0P0kxyjcUuWcraDo7nAotSK92o+U5HPNtV8Aa/LjIRaNchhDoZKML5npgBK4PI4+Ua039hHLZ6umKoiQaje4S/ckqSMktv6sfCN+cz6svxCaf7FlcGeXwac+oW6SwKOZ6AWddBO8lf8QWx2xOYjxuVsIQWowRY8uqpyRsE8typOVQPMgp0Tdcn/UOA8uK5kuJQQrEWuLFKOOYe9hx6rof7WjviQfQ/8D6nKqi6qPcLDh2vE3IJ54nqugGSZrVmilWSl966QNFrqtp/lB6jnIwYbQrGmMfeO8Jsp7f1PtynPcM3WqGveDgqD5Hh/X1cZZ3QjwA6i5VJ9JQ4wGkEfct1Uodap7h0j/gfDvHaEDIlD6pOZZ3rf+MG8YKjV8tTPfD669ogUVhVapZF2nYBdpMPv3YOiS82pO07xEvuy6H4wK+ZW0xItKW2VZxt15ErSJjQuhnlRvrvWD4J/ZRc3HkYD1QxYBNleLZL/nKT2+vIF1sJi+GNtcPpVSaZ0nfn6HtBszRp1jyN+1rchzeoJmySDe7XfvsjwUg9OwubifCGBHJnKp2RO3qQ9D7ywdvOIzdgwFJUVcKdfvEvQo8hQWb+TPDsMx8DaIxYAvOUx85JyK52CujLH585Nrw0FRw23nF36ss+qDSlAhqKdThR8+jnp1lI5vyaEj59mzxQwiYVrsLr5jlYxavSp5OWDP/IQ7ERkEBYO87Q6HP0xcE+o4mnLv5Bwmniq5NNs5rXOuOk1F3D6y8kfu9jowhXM8e0q6srnukAZiRdED2Nof/wmihCbA09SNTEX7rKqhuEzAacoK0QxgFO3jOCh3fs+0ScxxPGGT0sy9EuP19m719+J/JdVzp4=
Question
10.10
oQWEOzMq94Yvu5QNfD9a5zM8rU9lKVtZ/CQf0Bp2ARSmxY79alupUK2OGMwK0RYsEa8vxqSXpUdJOtuf41xko9PHjjhNPB0V9nwxpkBLNDJRa72qYrEP8Gi/7b940u/eChZq+CkiOWdbL6g4AlTJ2n/gP+fAqudC8NXfsDn5Y/JqolDbsPYI0Y7r+oswWOdQdGj5ppclSmFgJFy8vIoIjrk2/aQFEaFN6mUrWiCj6kRilGqwXVdjsuvb+lvOuFsCLcj7ng2WxDSGIWsYpassj8fuDEwrqIhtAL+moG2VB+aigsb+wFZWOe1pEWurTIkmFWGYz5bLfBGUgeNNLpXca2aeB7pa2xwzNBeWdfsxaWstPrdLoW8IirzXHD67w2G3sVA63ThQh0Jg7ogYSkX5arWYYMxD36N7+eYuy3x+UT0bcYP3wAt5dgVyDVJCdxQ5n0hd1lhRiWFiLQPvQgRl+3LWc9o35TigJuxcy+pRH2u5faTMPZWatn+b6okrBYYTW+KmELNyE2bgrW/rcgqJ1NlY6lrD77jq4ZDwtFomVz7a3uKkiQgOvhY/dYnA8mS0KobZNvWzEznJKTPCFOkeNPIwKcy3VMDIMXhk1457qJtebNqR65kUXgYrCVvhTH4FT+RMyFNxf/mq1J0TiTir8E4iQC4sS7EBz+brJDnjxi8TV2Vb8BZAMGWhE7CUKlQGiyxI/Bha+7oCyFwYOnMVdbCDbMTM+3lE5CVHoymrveYxwfpYvfMXy2nM0i8zwa69iLDeScWN8SLMe9veGyzIoMtYIibldpwBcfmYsmpxWJETgQKQY0C7HWNS7o3ll7TbY5fXcMBZfmqqivE4z3uZ8U935QtWL3P4E2283y57LXmRAyRxLrj97YbIGUxaKW7WBeCUfGfxEf5c/BGLpIK9ZajQW/u5HXpFDqp5fo6lTpsZjj9QCYDhiXm9Hclj9rpqRIUTCixdWvS/BoD4HXN8rAKMn5+idJ4WqMDgmrHMZS0buHoZcKxJN+LKv+55s+HuH0VBBCI2xHwnWkkWBLqqi0xxLM8NbyxaqUatiDuYWGyOcOd3V5YfZ+yEngzAC9mmqdqVgkizcHTI+E8BaikQcpIJPPKOZSEVOkQb2Qvr6uSNRRbkPcYzD9ipR63oTSRdpp4USGZioHPGqNhGUYwZuJU8kn1i0jr69aTPMoRk1ypcIcIcLXoPyQzxQrAcUs3a4X1+qamh75TQwNICwPcksiS3+iIivx0NkPy6upUPkyFPfHMtEtvQZcTPP0pOU00/ukBKAKcIDI1ntI0zVk+M+ITfX4T2AkN7G6Noa19unHrVgWUGergDJYCASZtDCccjTTSFjXeWOXz7HQZXyDLhbcoIggfDslsA3NRHEPZMOWBf1uVF9LTBXAxs6GvYn1w25DLZXGsI5tRgDQdzhXPARE2zh1rPlfQzn1wIwsR6p/Kj0j0iq4kG/66HTSN/9wSkEOP2DFF3k2Cfhz0d0eh+I4qL9csGAvzoCY+KTDDNwg0jKK50v14RmtHVzjB3fw3ZCu7/1N2LzAMBtnGOAo5OQhPwc4WGl5N51a1HStziMBmbL4ApAY2z09rII9LsG2FNsK7AOHYHYbypSro90vUFWnBNQ2VQEsh0qm/YwAjCqIwEA0JcaQRxmG/AWMD7t9No06daGerlt9AxvaRXMwdTshDagRcCXcZAXUNuBiWN5pifzch7MbujOhX6FZ4SoDnbnYZgpCDdOdI1PRlvaufFrcp8v9Z8F//IB0YV+EDmfVZosEkd+K3AkHvYyTvlEUymwiGQyB8aV4LybJcxA3Hi4p2uKMVN8qow43xjWQ509gB9DN6nQb7CY5X7PzfdoLk3mbhwOA==