Quiz for Solo Analysis Document 16.4 James Bryce, Why Great Men Are Not Chosen Presidents, 1888
Quiz for Solo Analysis Document 16.4: James Bryce, Why Great Men Are Not Chosen Presidents, 1888
Solo Analysis Document 16.4: James Bryce, Why Great Men Are Not Chosen Presidents, 1888
Choose the best answer to the question.
Question
16.11
J2mdsbhUNBX8syFkwVLWe2Tl4QdgjO3Wf9rXkozncpbqQprN+Rv/dVEGInETQW8h2Ih9Q0XTyOSoQhko9cO37CNzMvwEE0Ivf7Bg6K1Fcv2Ov+DHr5bpm+O4ySDbi1KbvQ745FYsTpop2tBl4Rqd0gSFUtaELypAHPBcYfDNN22X/MIfVi4jKAgFTOP4YdBZlXt9/JeZaR74WV+OJaOuqbPMhqH5dZ5rsrbB8OrovCD5++J6MUPc5F8FUrhfduYOSARhPTxYIBV+yU58j8nV1gQYwJu5BUBrctj7+8EDLBY2/+DM2j1Yxj92jKFzUknG+GLCq58LcV715mRre5+Sw9l33wsxLhEMdYxY8i0ml+yczchyXDWOI86fUyod/6MYpm/8jc0AomwOyfCoclCRYI+AZZXaHnv6CSPY19Ed/e3Ucy8nNe7wbpxLYhVtwgQmOZKUt2FxSNJxEceZfIV6Fr35Bmk8taA73Xm3hlVEXqYAaaU/7sqEaNKw1gUXsHISr4kJbClXremvvI31DaOhVsGGh24E6KJU9xKw9cVtJsXtFfIjXJ4ixO7AozEtuhARf39ZENFfXjDmcEm1fFGCLqtuGoFnvlo+oW2KokhTkVBptozAyzW8Cc6nxC1e5iGEU+LjzQ7Sq30Y3yZE3zsiB/B9xFySrxcVh5DAjrNdOA1PqehRQSSYJ2dUhfiAyfTY3dvmf9rym/f8J2Lco9hz6WggsYMAjmyjdUfveKK0JRGFFYdK/L0DKom8IIx0IlkR1cA7jm7gZFlJRgEWDLZSJvoNvTuGjXQEP/DkeY8X50CSIQgebCt+f53GtGO981SVUDKZpe6KdpabAuFic2EM8Qj/ndc+2FKrXP1GpJwg4/JDl2llFfMGYsRMvoz1fDXyixZdYng0AYmNI4z/0vRjYqq0zdTv0GLXHz1L+hAmhTTEu0o2Nb4qyJHui0lgJaabZHsTvTgrmVHggynjsxi9nI1Uif1vAjmg5zAMyvBJXJCr8w9De5pYDTbhbYaoHk3efxzbfraeKZ3LuBehnf2CKI5ZDrGd2aqyaYEnli2QxzEgvgjUSTjghdU+HiZY3g8XnLefQgTHF6tIQnUXdSvpv4AXmy2Q4Ib+r4UWoaM95U7cBWLgvigOY8n4JSNBi2JIoTgsvzxHvpXSELbguROzKHR6V4Vf7oLTGvhKO62PRj32wZwMHfQEwVNOGs4/sXePSrQRPS8e6SaYCuIT6aQ3XASzKfrEmw71jEvZIY66n0q2zetFjwwfao5AD2yEN7wn3qWsWRk4fgifJ2ODOV1bqzXy6P26rLqPif4KwuXGvahislmBeDKHA3ef/q4gJKw0AWqA9YfCg8A26KU8z/ENcgAj75D7mKSrPFqVrLO7DW6qmYS1JDuUuvzi1PaYCTaqGNY6AbjaaVzV8PFpc2CbWdMr1ESPUdBGMPsA3ILNTJgcropBZgS7W1NJrbfqd+RYRLr1f7EYLk+eyEmeRZDMVZg9esz74fPEnv61h9O+OUo1zSvnOKXMHoELqKzFERLHfaB7Ebyj/DTv/IWAh9ZjvgpFrunFzoe9fk34OA==
Question
16.12
ReyBAkT+vAGJn9XnHY4g3afN4I7I2rwERuzQrLGP8ytfc+PaE4guR3T1y0sl9VBK4COBvFeGbIN6iCzPZW+pGg5HdLxCfUwH7bNVWFFswSx0pceBu9C0gj1nOfBi07PeMH6jCEPIt/faD4ptcRWwq+L3WXlJQuwaR90B+T87OF/6HUycoSgFwz6f5ZBMDMTC5gmNa+Rw0Ym5rsh1j4hNGm+CusuAJ9gf0/we/c5yxpM0TKmOD4v88Qt1FA5Nw9KMZYcnVLRpcqVZ2f50xXPrDXoLHHrt2AtedkGqiyFcPK8oL6s2ipWWCSl1aKmcUICvbLgFbdMPO/E83Mt7+Ab0rhq83l527lpW5EsovFirOQI/+YBysWxkyrR3nkmfSAfvuRu9mgrgk8p77Iv7JFD6tUtYJXvdyEVsQNFwVpldWh/KU6uUJUQIFzvd4Zj1+OZM/lH7P9lkMJV6Rlk0dFcSTWor7A1iXij+EZir7YZb15zK+p+hw6DgXUYeWqkzNYTQVi7oxPENcDFtfrJmkrD7OJmdg0RyIW4Lp+NCXJkcDR+LZSViSI5ScfXBGyepi6PQKTQq1MnOXkFCMm+jXbX6dTgeC2l5FUyl9NgWoGI3aPWYQv2HRSzt7fuKUyGiXE2o7caFlkUi67AK2yaNSjnB+gLSnG0ERrPywLR7NzxU+41hds5HRk390CLf9K4G3wRXDImv3LvmrBOnhakn6SUoPonqP3fSqmGuCyMuX9tJlDMNHmcXMnoLLk/hkbO4I5NqPvFtB5u8yVjpEBkhbY98k9rk042rWiLTjTqhbdteQuKJ+b8WgYqAEkIxFuvVPDeJ11xDOYSX4aWxfqIOdgUI0/ChRzmIuIGg5Z4PfqT7a/Izo1TCnyLfNzj77lIw4kOXG7iH/rY0fcAQ9ky8d2a4b37TRZbChC0r0DFOdXYv35qJ4Jv9aOen/ID8+6DMewIBXbz1g4+iMbozdoygySd/QSy63SepISp26O0kiMpZl6KPrtt1xsKNg5lq7UEEIFMMlw/QE1wxrknPk0StPWrQjSWcDry2R70NLcCC//5XBo42tKKNhWHch5NQGUnlB3miKWgFK5KtsL1l9IGSrrbWm5U+rJcBdllj5hhkneSOwMKlJ2ZW6aFaLdrv0h947f1ZNJrSGaFtPSke3bbkz4ySmJCRnttrLrjGf85KGgej2zjBBh8kwir4MBjyyuhfoAP2OONJqQFMZARMRmQWlqPZReys2kFn3Y+oTfFS6Lzgfc+jyffrBEm6i5LJk0FRW99SGEXAKz+Mhv3M56r9sdRWRQbfyo09mXvIIvIdxp+kHE6PT0LsIwWtbS52B4QOduNThCPWrDB16PTy9iuuppen9izfp6fkSXRxJrU6/PZ4okAAn8qrI5gajR0pZOpUkLJ5nmLXGaONgzpFG7hpPgMZrMyhy9XMGaPdoHn0/vtG3VnWA9KxO2Xfe09ioqknFmOrn1rslF0yOWvSN8zRcCw7J8htlsNteKeQ8LwBV0Cuh8CPO34nRu5eoylU+5wzsqTVH8nAHskvnFAqRe2UorMoOf7XvqmJS8vD2S9m+eeTEtRLfYTGiLHtboskKzuDeaZRkMChlpjGezYo/RMBmP9JcmJ136pz0M/Pt/JaJNZHaWWt25JD6QTZR9oepHVFRa7BogdhmH4EsK9TCgDrSWGMGVVXMb2pUuBBJoF9ebiHyc8bTfS7XOEA4iNrHpWr47kBJp8I1KDmHivdo7mDGo6uvQLNnWayX1QKwA+mQJFV2uJHJDPbtNAVCpn2gqGODAhUVK4A8gopXhTot1pLTZvG9a9kNnRTsq7eQmuu/wRZLyYPdyjNoofF1rc25WahDUIYfx6eiYyPRrO1o/7SegLhSbCkRO7ZGtGGWWmcoezKi3DQKJGN3lCGgsZfHt6aAWN7YKKjfk7ESSHQerAf/OZzWpZFaLdMET2fWvlGXV3Cm5B1KKZfJGu0yGZ40fOg7GsJRZxHRi6LiB78mDKsU0MLsJyLBmkC246CxQTi3+Ggf2Y4wyWjMN+kJjTI4sD3KXETXeoBgMUuVDSUWYdPBu9UORWlZBqGPJPtPhifnjc6ygRGD2rdYpRp9rBdzuNCeIc0a/KeIhlqL7kYEIt0tAnWsICMj8k9rXtobVuVSRFfXXUoV9qKNj0XTL3DCRmiNKgR+1cncbGMld7yF+gYGV9UKPHc5/t3cKCTLuHAMpklFvv8Ag486zs2ZR5aYn5EFD5oayDfR+rZAH2M1Wg7wlUjMDLoOukJmeXBo20ao+VGiH31+XlZwCnLTA==
Question
16.13
3ggp/dCpJvsOLGpW33xMxzUbeNPopqRrBMplAqZJ2NVfnL1SyOSzf6RWJfAH5UTodX8T0gODMxWBYq4xzXoBSYr7IdyieKiSqlCHDoBTafc/9ECnNmU5nfB+BTOzBfgv/cc+yAuXHLN/VgFvsguAw7Pwkvf4JgCc8s92c5bTLLwzgEfCiI/htFXI4+/U5QgDX5wXPjz3Pzurgs6mQTOpq1luqBObQHACpgWLdp+oNTbUE/I9xqav2+0S0qRj3+hGDP+bqCZmEHJdmynQyR5qTU42ilkj2de1EJ8JYm15I91tKGcjLJS2OGsGeBl8QdnvcVZazPj4mOt8PpFmM0lzCcR2yEKtDH+ADe9C0G978d5VISlOAgl7EmYcEqaY6fjRgoYjZH+09QnDVtm2GyBCs2OQBhNtDRu4mErIRzexSOjP58uQep24bFWJ6wGLAyJrVmggJjJrSVhBrf5sl6ZgfNebT25WFBsvZv7wxwV0nvINh1vs4URfPi2MUaMXtOFJU2azvgTcT/vC0pMvPrhGiByKMf8KXhf2GWDT7GPb20bONx+eaOjg4LTlvO8RB1QHnOCkHWStEaRdna7/6B/UA5ePXM+bGZJZ0hJOcvfTPkxVnCLL5aKQmcMmMi0kIUV4T/+3eulQ1MwpHn/psA77rPG8hdxT15bpE5Bb4haXGvH7SMb2zuexxhHCAVbKLJXpgNWaXlRE7Oxo2/HfGUWJHFsHtbnuEliKj5SkB9/yfM+gIneJjHI4C5RBZ9QCd4D8PHW8k4R10TplaoMF9CUC74cPDUEBPm67HPi3sERWiO9zGwFSqZts14HusQty+QcvytjE/QcSVfnuJEB8O3MDo9gl8iEzAOiPeud5R42sgTcC+rpTwQbAL0LprBnlIbCCdzXVB3BoNnvF0Jq9itWqFFQ+EG7C/qWeDsmmKwPzmb1pa4Ns3jsEuIigtdC/+3seJtQSjkAa2R0589gj5nGMmdbRmfjX4XIcezCtERE6zFtr6WzYjiUNVGufOs96ekPWG3XrQvb39lG9HVyPiohKN5AU9GMZQCVOrsFuNYoZI4gG1DZVC3DE3Pp5Tt9QHCMvmk79zXZCkcjX8N1YRgR/GZ8N4j/1EfOfOsn/d6+uxb+nD49XQXXNb4PZALmphiH9iMVckQ8BP4tvx3IWND2qFzR2Ay8uJj//Tqa45T7TQ6TilUU/4+GhMdLtJbGxhtYSj+lMzWhUajT9bIRvAaAvf+zx72PLifJFE7xXV2LdberVbU/gKAWxPXrybpWr2D9CYTg2VhMvOVA+HJdMAUIcutY/fWPSh2GXcY1i8MV01PsiWfemBiNuLcbO/jVsCn0E8s2k0gRIFB8+QXbniP1btl2OJhdpimxgLErQFSn5rLBPtqiylJfuKp0r5Pq+NHRxgiyKunVGCmFE0RyHIpUpeKMPqoCMl/GR8wd8nmEQ2fXgaL6Q6OJxzEJRGo7f3tYeMpWkKOZ00MBV6XBkuJMTiXJJH651x5jCLWyjAaSG+VRveXuOqUHZ+HjPJTu3pd50NJGumQ7e2T5B9+wogm95NbksZN/N/dBEgUOGUvLC+0ntf3ZEua82O6ksOcpWDtGFUKggvb9ACFtCT91cPJ8d7SwDX1ohmqOh3HWYWUGRdesRj8c00WvBm5gz2Y9ASdgEUdJw2ITtndnMvFcG7CqhXr7fq/zrhb2tWhVZoKkIpmCq+1tOQrtmx5gqkvtGOpaM
Question
16.14
KFM49r8AjXhysV8kSpRd3D0d/NnARbV+coI1IMjpvQgDyNzzFope52ROzUyE0dYzbD3HOVuuqmVLiELOi3U/G3k2DyYRq7xHp6vU3HTKZ31pzWNQflXwr+6tzsKt4qXKJJkNrLOVnW23Ms/7A2pyyG+JTrCVS/gw7OCOBOdCfFq0u1haH+i6vUdSb1ZMZWYmC4gK1aHky7yMXbaMx70uhTgncIX9XB1OGTBehmZydaf/j/K0CUySRg9LpOHNeDpwEMX1VuyiUWlauVZo4TJzRyAyUwkmoobQi7x+dRQb1+oiRShAMKDiDH509oxigIa4pFkP2zr956fvpXKMnqRnl+4YHOIcF+b3fIhL5RopmVHmiPaQbYpnjxNu4Ey6wNjICU6vEgXXXDf6ThyOQxDa6wA+aUcznWBuXJuwe3/BBeVRI8EyFJt899A88k6Uax4EKVqHpp7GkTKJRr5RmW25Jxy4YgeRzo1G6P+js9fGBOplwevPjBcgir9sYWBW+CLKsPFKgKc77GLgfJSWP+94zUcnM3vKvVDVdOnIwwpJb48el3cRKn7YVzODRgjKxYPMDq3vVuRSOcEtOzMmjltfG7m9xw8Q0JzK8n3W06L8vvt1ndHmd/Y/kTTHQQMkH3Q131qq6T/CfZ/sWBFsvfOEKYC/2Z+GJunxxE3rsP2ZMS2uJ/SX5BtTPGbIOHLSivgo1i29392CN8PqSA26z3riPx5QVTS1i1izeV5mXQrj2yWHOVp/U8429SMmXR8FVGy0ogp4RnuOAQ9bHHjjuSAgIt61/QDw7NVyUEnv3kV0ovLx8qoM3UCP8GIDvSCkW74+4sib9r7xZb0GXF+QxbahDcx5MWzCMk1NTMPLWh5ZDsR04FvOmL+qP9jWzUCu9X+PRlnXMgUlJwt0daHvuw4q/Ub1A0HkpsB3SJx404JHv2j5hzND6ZbEB7UEiRPJeKHM1b3f7LaPSw9x/TqdXUWTYgbjjGeYMLJ/wmdg06dbw1OnhFznWSXMMhePUUXw2pielYv3tAfJfycOo2zrQKtQwb5hTaJaOHAckwN8oXciqKI7AV6Ahrp3+rhWcYL2CCa/rHYYrOLc13jyuja4FBcmq0aitjj0AAdTOktGNDuAoqDwB8NALpHSAfOCQEO3fQTVEZwhmKIygHR/vAfxzHvj7q8xVaHevZK50uu6XSS+sj+Abzs9dyWl1iYWaJKCUBA3Xmqqe4qAmANRw+6xIFlPTLUxLmm+7gtfhlZltduAunFSBQ/RWNZ7VzhtV5/YNzHhWdRCa0nLG7OKUph9PMZWccRuTOKtnf+bqL3m1rUB5F9d6fhx5D5r7GQ2O9G2nuUdgLrRaaNABrBJGGliFKuoYNegr6Q3jYJ21WB/xrGYPdTag1UbEqY3Omoa9QaAC08raudmnnLgtU11QocNZRZziurKHnO6MzTpeaMsAw==