Quiz for Solo Analysis Document 17.4 Walter Huston, “Here Lies Prosperity,” 1895
Quiz for Solo Analysis Document 17.4: Walter Huston, “Here Lies Prosperity,” 1895
Solo Analysis Document 17.4: Walter Huston, “Here Lies Prosperity,” 1895
Choose the best answer to each question.
Question
17.11
55zvsVQgssi4WZO8IyBM0scLwIRD6MRjwn7SD2m/W8ywfh5+Tq+EWvYWNnv0TdjmtjjD2bVIEzjkFl75otHn6iVjMN8VaEeT3jsua/lMjOcvKyqwuyDUKDXWasV/FGyLt/z/5EHN+6taayTC5GldVkfXIDiZigNw9scJNjYoHys+wmUj0gbhgRHTdWF4yzV2sh1zycdYrJXGQIdZPoX16yLcFcjyu0W6xVnV40UGoxV1vtXkZfOmfGsNR4iNgofHbkWTMdT620V6uPmXcI5s8UkvVnJRST+qI2wflytZdL4Hfocgll3SOtOonbq9qbswkpsOXI30xgBfp4dGCGJ5IytvuqWixoHf6MrVg8YTY1CNbvLl1omJl45DoGDmwUmY+EdEtkWkm1ujQkeqQox3AEDR05ymLTKiozIhH0bANkhiMKCdvkzJhF20bwXRWjsUkKOcspWFq0OAvSzYdU3VzkvAig1rhjx8k8F7qI0ICaTlUa4WtDBm/+/khmEMmJAJ5Woq/5k42AJRquLV/fffr0NWBpA2IlaMFZTIeZuyJxMIkk8q2LHCpureJrbULu5rR7I0EfjAoVBzM4VsK4ttHqEY7Zo1F8oL1uxi3Cmj+N1DrGj5Z6R/cedLhRyhy7MqanhiVgnPLPfle/aI+7MI5/pZ/3egK7G0lCG1YyS4Y/J5O9q4ScwySGAsGiceApTmi+nYIsUSMyFdufNlI0E+pZ297AnbZlCb79NPk2RakLp69uHjKHSy6INyGZwJqwRfK/GUr09HCp9TWyk2wcGxaeya8n/GinRiKDOG8Bngk4iUIRnYyUGKnFlIMAHNNsPWc+ECaXGUjO9fVsQuireLqdXUHRsCxwFbKUbPU0Org1WPcEC/sbaV9lkIL80YD4gqUi4EM3G8ukoylR71mNKrSDG7rtSCEzHD4NrED10JaK3SDvyeQ1i6IU3B6BvKXbgoW9/HAy0FbOZm+rICOUSgwli7fe97bDAAbOKi6LIC/+meTHR5/L4RFHRBvSN7LySWUTv9W/smdnQjG2GC4oK+7H84Hk15mlwREC42v1t+d1sF9l+msMLmk74Z1RWYt/TjnDOL3KLn/X9G048WQkbz3Dn8o9sXBKZ9wuwe9e0Py6yBaeUyEz5XS9F4qcsiixUdJKUAGiJrYEBRCN525/kkKvKIdQbs9nEYz7n9tgrs5MCXA4f0Mla3EoEykn1eOtZLgU+shvaILpJw4ay3mdeKUagRl8SdpQITJ8UwVRnRMHK50vHJvJgVyma/tZFk+Uiavw6KFKEtufvgpP+jp5gOwz2H3bk0hktb9TV9KRlxjjFB2yiHjyemCLQlVULJlZzLQy1RmiGyaHoo3/YyvDez5/4wsky3Wm0BI9oz3n6aPvpnTuIEbWEUoeuav4PUuIDQSkDkX8N7BWaqJXKn5EaT0QS9jXdpfUZ0jJJC4HJtK63t1HpP0uOuaio9NJWvTU6PkNKcqUcrdJto7sUuTEMxMaqXU3ZnehiuWUUMPVZzyOO3ybKWAbf48NvT2R+xxt6R2KTc4yY72yQdf44zdrLzJncL4j4FHt0c7rtgD30krKI+NdULMHVLw3b/dRtZRkG1c3jIwMGWNVGN8QB4XDSK3rV58+FtZr5zkG3F5XKRmrYDk/Th/3cggJrqOM0+Orv8XayDmDZOQY0gdibPRDMteJF6adO7uKLyJ7nU7/0EzrETRcy2zoZb61ukGKLU+pgGNH0h5YmakKqKlQpOXKI3J/uwiFKKMgGHOkqjz8f6hNr2+alKE01AWiXFVWqk+5dAyap4tZTgnFL5Gzdr2N7G6mBFKA3EXAN193DKw3qQIxhrKWFNFspSvdRnlSnKpBb14HpCPhamzvKRPj14i8DwhiBBrZ2IlMFOypUnigAncvTOIepSvJyEM5wQM66OxyHDlc24YVExo6Ys665/VIbTvN9/VmpSc/7RHZNkiJVwn+IBw80kOLB3BGupMfEbWS7mRZfifOeoIeb+UgBDTucu82WD6/vja+zMWeIUdEFKHinNLfSnn7AZW4Ckhr/fPH61MqgjWh46tNKnRlovidn9MB033gHIVoA9RiUVm4eA8xXe1efmqkooRBnVTRDO0J0Eqso/50L1VaITvgVYzbRJ32EfOhX5GOPmRy5Ls47T5AreoZQh40tklgz2ZddcWcoRwe+NrWNwcvaBfqOi4+NXTHQ100mj0yRN34MKpK2Eoijg1CVTZvXbN02GVtWXc/h6wGdWqLSz2mzp07qQDoMLDM2DyXyEaDd86qRAUeYljDsSlM1M6TGUvEEds78=
Question
17.12
KwWns9cfeZXF3bCs5uG7q3GywL9thz4CU54mB1GFw68Q4smSe705T2VeDUsAXWAabduBFJWwnPkzNUkeyBgW6j2WV79sERAea92rCg56L2bk++pYrjXQMeFF87p4iLfGcEyH9DsTS36v/Gdpa8pPzviUszlvL8+dHF5Gjpghl1COn9Ii6DOMRerm2pfe5mn6ICE15FSIUO2Zk4z2/YUfnhqK/GBMik3H7OdWWKt0uLtDqXHoeYHvVeR9QXZzNm2ZIFW0HKqs/v05BNm9mBWFfmxp4P+n3a0Rn3oOCjvhg767OTN5ISuHKSR3IbUlJ7olwVBsesK/h4VPgfqJbJ3eUprnBuAadGyc/bMhQeXyvirU0viHMSzcQy72Lx1mBuQe3h6oKAamufnA3VVfIzKjAsi5h92m3Uzf1n74zkb4g6yCkmaChyyAcN5+1VSkUHHi6DK6+fsJPXsCVwe9Y5n6wqZoLHx5PPF3Igi0Ky1iUSqTo80swwyYBlpcMC6ccL3+kKDq/NBYPvndNQIi8T1LYRpCr9b2W0e86sIHcbYW4XJMi8VAgLzPzrMOLMsHc8WnFExlIVOQDvqFGkZQfXpRBWtl/pq57c2344hjal9xRFVb77vQi36JrhCcU7a31E+XX7K+8AYNUbbgZoB+6T0DRFxtrHhaQGmROR4x2x8RsS58fZ0xFXOhst4DMEe8ldw+gCKquLt+70V6w52jRyYGfGbxNkujYaLxPB6EI9jTcGNggySb/tTE6wCA7A9lU9XrVwxE0eR54bugya3Nr5zDz7/xDPWUle4rDa5AAS35DYFuljtdkup9QM9IwiR/6QQ28KXSO8R5x7HXC8RJiTaZhLS4l2EXU83oy2M965ixDMReqwiNdc91U3HgSvyvEb3FDDS0iMgDxAmi+VW2b1CvUQpTDX6rrYwMo36zDJn8jZOiKzIZwiwLvzJz2tB6IZxoRg0oEecok4ovqIKaU/B7ZkVVQi10q1ze5qS18SUfnjC8dgazIahCWFVgFxRxQ2hdvUTmd1VrQKTcpz6n/6K1JaEShyzzW8eeOteqRmOyMH6t0nkCNBQczZVo1mhZLmy/dT+rPtnf2p2yHqgk2SUw0000xgamHqoDpi6laSmASI0uhshQzHdHgxP5NPjmlW2DWcWXPuPAipm48EuBKaITK34DUUnb2jTPvaMpwGCzQoknP+PqyffixLJ2sMvn9ZGPbkqlXvnhFPEtNEad8XNXPjdfdRYyyzjhPe705cgUsZVpf28QocsIGvmbaNMNWicwQaO++H54nSBWN7TWycdLHVPTLLf5+mtLOjl3IAO/mjSyMWh234tqcJSXk88OH0qg0g3egpKQYPjp3c9z3dgJaosOlnhemeGlIFA5kTW1cvHEms/+CMOIE0quy+C0Tf6L0qN6mr6VNmGRSZYJ6cGisPzJEwGwh/4abJSORjerKuZpQFoTAYWWk+ezisEztnHXz8w6PqLTZo8gParkWo6tWf9w4BMo0FNlHmdfiVBvMSfp9gLpnHtZIpg3cWYu+Te5LyboFWlS7e1x/h7O8bqJ4lr620MdXoDwpy85BdC5ieTHazgjyFG63uREUzhEnP+R/kgMdZBqLr1w2L7ts/gs6+oKOc8=
Question
17.13
UJtiKxjegPpU3tjJT4Mt+RLVo0oZ+3OmbvDGNpovLxm57zjjGge7INHQf0nPiIfrufMj8/iaBi7bRalFTF5NEro5b+zmT5AjQtDGL4UHxg5dxLEshuvzewclKyzFKIvrVC5vTEl5/SvMoo2Kgtp70WQs4k+sRIXie4+zpGnpwAgXAuwjwDJWOi8mAWrDYWvhwcn2RCmNfez23S9/4R518o89OoTnHttLv+GSorGjxV+7AvP4SlinY5r36RgYXqKbyoeF7fQKjkyFWQZeU0WpeHSo2B6JByNqx6uOlIiidP5/pRvitQAAGoMhiApa8h04ymhxOx2FJxK+NAYYvSSCloLVhne2cwXKnW/P/9pyY9dC2TEqXe49C5luAUhHebXJI5eWYLKFyn9t8ywhfb9G7g/qgu6CzittdI4eREDfOt9rBvr35OSQ6V8mkLYfRg1mIytP6qk5PwqS/TgZpC43iviMj7mJ0ozRB8IloY3q1bnbbhkHCfwuQ2SbQJsuu98JjC6Wu6kd4p8kW9PrHfOiKrFBNjSihj/LRyIkocWyDJX1SUT2hcJtowtgdBBa/46QSz7GvqPph3qC0tldm4eq73MjvwqJnSEp4TNEifKPDihWVRK6DWlQDGsP+BxaC46ocGNyPoxTH6ybl0Fvy2k+gw8nqn22FJ4p2f+DUAiRRDDGAL6nl8jW1M5hMHS49OmuhpXh40YRWe0PP3AqP/oF/ISPlDn+inUoZj0gsRCcZHf9hLzsI0STx8Tnv74jCJTqVeauIOPntlVPHuNGRvv1vbxF+ue2XOUhb+B0CFZtvWWtNftt3v6JIODkKoJjOIujHGzPOD4dqEGYTL95ev/8pyFSJw/4sMbgAkieZsksPbyCAGkhH/fbY+N4RqBUeQwDcr+MWE92wx92zSleIdzM9cX47QqK8ahPxb5/D2xK+0BCDEHmdOvtaM5YGm4YxdNGu+QtctTUFMowdw8NMXezBrfb/w8jaKyKOO9dSrS1pJmNahWa1Am4YCgQ/yoxpSCiGQvv1ViCd9Cqqomw0s8tsb3n++s7ihaXrLZEBTKlbYbf38OC+ZKg8Ut/UECYpqoheNr/tTVPADT8ho9DEK09g3sPwxnxZLTp+nmUsL/6mZnnw1EKkP38Wk7MYGn+si0fLno6bnwqVzV11YEHebqJuOFfd8dQ3JpOX1KUcJWMmPYtPbwB69l3mTx9hjdcd0FR+eNahXrgmUreT7o4aBsO10UngBEOUHgMPl/ic2SfPCnlDpi+ye+urtlxniGFT7DSMhhNG3rMXjR1ZqYHrikCKprENvox0EO4vI+2xjwRjpYxaynHLR9Tepc9CxMLh2o4MIiZ5Uj17MD88oTDhdUzrFY4RfwiYsVlo+kVtGRc1onDyiBpt6QyQa+LFF6AMzl8o8Sezrx0n3pSY3JeAQbqIZ9ciNNBpOTFU0fr9Zn1+HUPzuUGl5gYmLoL1+xJ64Oh8SMTtGyTyCB9omVsDyxSMl1l03JDFgsj4cS4j+fJhlHr8ZgK+LbgvgNcp3FHoXvpXBk7yE7tJNKOuPgm7lqetQVmK3bHJwkxeUFWd1RP5wISZ9b7VewA4dMtOUmrVKwZatjFBEHrvILF5Wx9
Question
17.14
2oI2wyMxTvI6OHWgVXnVK50cXdNok144dwmoiN7VM46isSg3dxH5p+W0UwoQAfrnz3m2PZ0p7+HaA4F7vmxwwtpFw3RV2t6L5YGmb3dxnunAxzaNt/26JszJnz0F8qyIYUhMH1oyhJVFl97EnnzAqfORB6863svchln7z4jUuUi48tDKr+nEKWPGHjx37J7Jgl8n8JDjszmkOmbJFPLlSJbZ5rimCmVFl4MlFz0VpVwSpCMXcQORAZqetMNjs+xExza7AlrjULsw6L+qFpPgnPdpjrhJMx2b601C7yhwgiWjtiKnVy26Qf0gtP2oYGrQ+Zy5rHwxdEtIFz4BKgzLDiepYFibHzXlbO97T/dnnXXd4kT0M/R1z2I9QauidHtaKnfnWYLDoh6Ib+MTcp988MKqME5emp/DcYFyCmNr7mG9FH23pNXuiAp9AuJmWXZyabh/fS2hCUzHmIlnNu+tsYD4lRea9Mrl2TdAOhweFyjJ+azriGaO8VM9v/s5XgRWROcqBQstpZX9fAIypTGzA51wbiPR5e34TpaqOKoWwnSl3+6iXBBCGTztn+11/C/KwoYvJGmxQn+k91GiBcZ7Pz0Hr1qzuxrpjNB2J3TOcmfp6Tj238q15jSejCAjn+ZC/tIzEtw/QLhMoFopwdyZuIb+LkIIy2dryelGVX44W5sQsFW7QeknTsFPg0rqI6M8CIfe+oZiYng42g98vEUaUbRb/5IpKilXtxdMDk9OFEO76fVb4ROA5p1+FB38rvv84JKppcXNUkVZy2VRMXLGdo2pOI4sllK63uzR3Yu3LRwdq/+7OE2W0yZsqVwV431Ahoq09eJxzHMenHdranW31KnP5Qp/bKtSRAMlhsgP9uCjTlovtYinmWPpoYo/i1Nd3OimCfNkX9iiQpb3k5n+Xxw8Zx1YTQjKhYKlgjFBEQ3WoK4FYnuPS88DU8R9BAshwHB/FakF0GaK9SIYOC8VKKfN+R1OCH0UzNKLjfYHKntzoKeVRShXbdJaxtOOmSAI60j/sotfwRiiseJiZWpzD7yiKblgMn+dvq68UqgMpBcOIBiFLseSBSXuI7G0fTE1eIJnkYW11Lnx4kevl7ro6DVN4QraBNhS6vnpul5Uaak/XOZ3wxdRs7KPSggm/YxqUlxj2eB5v0k8LQcEBzG73qfpMVG+2CdmMFSJu0/KehXXhKCjp3UayHi9UXRMjOAD+oQuPOW6lt+78zgDg3GDgqjKsqhShCx7+m8xkLxH3/McsOT4k4nL4F1J9yEF0zgI/gD0QnolGQz0OCYcxWmE3GTkc+HHHMzyEnoxkl0LY55VzurFt/7CI6UGKg4L9QbXW9gSXGzVzSH0HoXIbE5AGEF7WlngKPyyUch9RPtdt7ctnpceAu8hJz7H3umu+IapguQZCefD3uPLCaaMbN2A7A98I6H48f2+GmVfVS0hFMMetBi+8ix2z63ZP1q1b4vAmbSgtMqdeZyrnN8Eca4XqCN64EPkW4YYTrZGPRbqhlsPfWrw4blH87bCE0einMBNYTcfPGzGH4Xrtf0AkSP9QQ==