5.8 CHAPTER REVIEW

Learning

KEY POINTS

Introduction: What Is Learning?

Classical Conditioning: Associating Stimuli

Contemporary Views of Classical Conditioning

Operant Conditioning: Associating Behaviors and Consequences

Contemporary Views of Operant Conditioning

Observational Learning: Imitating the Actions of Others

KEY TERMS

Match each of the terms on the left with its definition on the right. Click on the term first and then click on the matching definition. As you match them correctly they will move to the bottom of the activity.

Question

ZD8VEVwIUmA/DnUlaBKBrPbRiesfkvNNk8m6yGpMOJNQS/5pZ+KuUWpBJ/E7xpEg9bXHAhAaiJhwezGenLqK4CzvisMgbmGvsGDJcUFOVEeDXDvrLwOWQABfboNODPmEo/6Ot5ZqWklbLtIJC+aRKUcbcPR17mvXSBrdLUrh3QNSkOu0TdFjYQAfYjP1BaDmBXrPM4VoVfL/bfXtdvX/Yt8MQx7g6bvnuGQMpFauCSN5jKpsU0ZfAVlZCiQq74MhhNSOVKhJd0Ps7dC7n+9TxEHYv+mEZtxWB7tKAelT9ch52SZ/qxBLc98elEe6y6GlVypmWkWHVWwlBcgclrjW0M+NSe5n/9DVgbkVP2Y5an8CHTNWnD1ETTSwuGrXl47D4VDeOlcnaitmEhhanhqQoQ+STszWqV7Twxh6H7bgrWkYecEl++UzAkydZAC7qc5QACMLWRyYAF3o2aVfolDhN8gLApOfuDqh7oJ4zJacw853Fq4Q2Av6wPw2NapOCz5zvWiewKQukpeMuTxMBjRnRt1AHd15bJin7jdUY5TGzqHB7TV/OMbxuqQwqzt60t58GBq4lml8kRo4YeqndREZDJw5CdXGCF8dUuZ5owiAmQNweVZqPYiM7qynIUfdAhANkbp1DIrJtT3FSoDRhnjRitdWzCJj3NH9vVCbzFSHSrW2DiClfXN9Uz7tT7M2eTenxTzZrQvivRxlOphvYFvnnwzGwUgmirtRYNW7v1cv1/Ta1zYQexFnwuV2WlTPCZnQCVB8k48IS3IeZOpebKIXxG665q0qvVsNjRmirbgsPpLBPQskXF0cpf8RS4VvuZMOl3o2OjyMlzBT9IrmEsu1zYSrkPKOudPv4GLeI1/54lKRUf8kEGKpoKiyv34ddlv7Dy5SpCT9ZoAwHljyYVjAFS8BDGuRAOdMsRd4vQkk0wnfLswCL+ynlj0Ou0QTbaVDcskeD1+X7M9mH75gdha6/E+Po9xAqSh/FqSOO0HbIVx81onYWjCEYiR/w2gybyvZTeMxESWF6VQg2zxxFfrSUsesLucM3ZU0+flvzh0ZFvds0XiFfQ2Y3H8wA1jqfjvZX4VGViwIn4JEUBHlHW/RJxGMyDsajCyO1P7Zp7NdDvghd6tjdmtgFNayayaAmh8cTieHEWIT1mkNjrKUwaN4Ek1WhIEz8Kq8tfBBPkJME7p23IjlSxati6orx2nqWdTzTWkt1DKOx/v5VPDRzbhBmHKGEzAfC54hFx6pa8BVGkSdk7VoWeguXze+ggt5QASh2/Q/vGQlr3bsBe5J4llxOXBIitUPZgrB9SxBDLcLPyc1z/jh/pqiM03CalsDjgB8lHTa0lsEf9TGdn6dIaFpABF1M8emi5MhBKsdXW7fQw19UYEZyi8T//PTrRfSzoVpkll8ScLJVK6tLeW1FC98epabs/hncfMJ6UPVDAuOJuC7KZnQslTxo371YkNGf0f0tbCQcZ7G6trqDDMnTvcx85YDEs1W6RqPkfvDvaR+Xo4SlMEEDFmhtN7c3TdtdiMH4ojur1pRByGyPX+3eRRRgpY63HVJsJkjS0VGA56gBRfwwZdq6de4BpECuhAXH2CtNdI/HzNNBlp+oK+6+SoKz0cUMxQsGyAKyVqbVcRJ6o2qFHtbFacwQnX0Kt+vxqtDF91qdjwO2HQqS9nESlA33sUFC+KUI+Tj0MMpwGLenUXgVQEIcqTb+15g88bjrNUfjFUYPePy5Yoe4BAw9ZpCv64Re4WcwQ0R2rJgltxISo25uC3UQVjRoGoYZxmS6x9HdX508+D/cDuWbimlRfb5Z9js7VTsmDF5UC6zokfs17HOJduVignbgRQUFgMV6t3onQCeAEYfZ+x3deV1pG5VNxAHsRBoW6FrycMFh98j2EQ5LYWVesSH2djh/EziRiTqZL/uHc1AINvCKRtupcUYPR1rgUOFU0Uh/P+YSBhcsuYeTlSvni3kjFJeQFaCQeYCZDRqbd+YqlRefw+Ig528kxIBduHKXrTqvsSeDrUmtUb+QPC4S8Mmluy8lkiDcaQlmDF8qjjQS9ih52ilSmWIwvONox8qVp/+rkndy8c68NM/hKk8n42cN43ddo2fJ6gAXWE3K57P3Xb8yw2TcuZ/qLd63oONMcazFvHJj/hoNFXgyQrlmiBHcJY9WB4tckN888skILzbGZ04XL/Tdl9rawUq8j71sKz/oAGZNQJUc8p++AoIGau/Uz/0FQqlVpThC6sqy9s+C91Z/VgK5eHxiB9mt2aWtEyymhh/Nq+3uYlhexpBrwt+r580oq/xl0xoSJya+x8LtbW9eYXDtzK1maYmh/DCWsM0dkPwAtUYtb+H7uze87exqLGgAZ7CuKJ/KEdS1R8jfUFhhz5hQ0pbvbQmbjAHc+IRboIgv65+T3lb9cbo2EQ1qlIdWb6uN201sEMR4+zPcZJ/uzlq9JgiWejahu1aM8VtjocdeJMIkbuZFc5K2AvCVmpk3T7zA0ZQdDEHq24XfAc+FJN3kBogj4caD7jZe3GZw6fzG3FrtUhjp4CvmbGslNzYpFkMBksotUbGlbn7ehUCwxRWG9xlAjiuEZlAen7aODeBWEIWjfmHiJfBxRNo7x+RDw4dFkZQNCCkTuWeZCO+1C6VKCvg76Rxuy57TAZ1+O+12OFwRJqdFQSToFOwFou5GWoa+dTHAUuhgabDLFYwFbLaU80H08y1LQoxq3NEI5rwM5FEm/k4DIKjRVq7JjBe5CcFhZFRJ8xKBeHnft/5/6u42npSESfqy6b6p7fjak10tNgHOU75USu10TxaxVGtGI6qPlYXaMnVFS/kMAove/dqlQr8BQOS6DgY+m1uuN7H6zdNFfcJB83xZBIqmKjaRNiK3numBXsVgZW2dB+li/YZ015C38sOS5kBl+m0jPLsOxE94+D5gQXv+AxmaYCs8x2CiOETji95oATs+cUs7HT5grwJ3VVHxWbwXgPawZYe94UhICeC2UCtZpdFrBA+htd6r13G5iAKg8fkQJL6zSz+GSYt1Nq6UgjrbDRWmDr/m1PdOv8PQM3Tnm9jct0LRyEpr9k7tk1Mzib+HIbK7A6X79cpMhV/AHhN8NvdR5Dkitw9fqARsJPyDsHik7n6qZ/xKCQt4Ep93wxFsd0ZLGz/NnKVZ9lq1OiUyHwASQOdAPQ2PBBdE/QKHLR0T3wshhPSeWtitE2zQGNcVkUyYm6hZDObFQYYa3Zl3D/MRXat+OLPgRIroN1SL/a/WlRrSVOYdRqyD/aIZSULqO2Dvv9dYQXFZVlkd0Wk3ybswFVVNDbi0ZT5WX2Pn/O9zWPnt6ishwPy3ZsusnrxrpqOnWjPJX0yXB7BlhHDFLKUmlNb+T10M0BXoSvFG2F5ZycajXEOe4ynU4939tMcqW8im4CnKN2WwWyqXWVJuIawzVt2XW3LDUAcnXJmyJ5hczxPipK9sbNRhA2HuFmjenZJi6H7n8oJi+h2SG0JMGTTa7jnSzrdQXVIbusDhmvvZgioFiR9B18BTMyCWYIrqxL9WJ3MbOsQzi6Set3X+9/VUoBKncD5LJwZ1Qr4Xu1kht9uIcEo0Ssh8dIs+SrDNRSrJpXJncQGIW/f1xGdnPTFgPfTqV/wl3oV0OYYGM6Y09yjw06S6c1TpA5sCIhzpq43lK9S4ztGB7IY9VxXEEppT07UzOVLhWMnRMCrb8UtErVVPkS+RodIRgoC3ENgokJCHs33E3GppYlE0etLDCtMGTTmMKRMca8Cf9NMddgeA8zmLWWnANlxBCkhp/7H+eud/3nVdC5aH7XUuXDu2cNHXfEvkcuxu82FDYadCy/fTVV5zflQrpXs7zOL0GPYDXXxId2PawF13MsZ/T2B5duKUv1Wdh8CbWeP7/6Pcr/hMIpwynAeudl/femF8w94gV7SQxBmMHq2oCXoGahrA5N+CzhmE3W//NDBesZ7pdLqcKG7V3caVt6QE4Bq1s4xOSz2zu16vKbA60k8JO6fxeTHqM265+fUhqfr0T0ri3lfHB+zE5hy3wYIQU1ffdEllFLhYc0qkgq7pRx1Fz7jda5YwQu6rP6awmcNMnplQfmyvuv1h4MKapwoGlC25zTQo0TiPPu4RVKdnrYL/WVF1JhrLeF7b8pC1nEs5u7vexUL7GtHFlpmOFWEhqbyiCR15Z7QtyeBOuU/qBe2On0qHdBYEykZIkumkt0jpAHwUkDTucKEE7Ei7VYEJzn8UbzjviYTGfo2p5NYh4NkW7vIGGT6e6K011mNm5J2KmBIFqkIv+GklOdW57Gya2UEFyHzzPg3GQ9n5iTtRvr49ruqiB3i/ii4lyeJADHvc4OXTzZDDzLkd2JL/PXKpZtyXkdZX3XeTNjZtzXSfjS9JlTTP/kh8eHsPoa4rOpDt5th9NJ2iMLx17ww9Ght7SCPTEE3wQZqWX0/Hql96hdn2j2hGjpM9kuPKeJMoYhvxCqdxfbpPGhQj9n4KnWmUpSpM3u5mmaaH7CDI8psQNI35PLmiAyWboMga9uQqQsH32oiW+uPYmcEH3TAjf3xp4JOuVlWggEQmEFYocHU1s28t4e0UtHQ/A6VGOtk6hapBZRu/gMUbajCmueJBz1Z5YewTx/aOqHDNbUMOTQF6FlTcGhGZuug0OQCULRKJuY0C+24r8oWkYczHKeepVqO/vw0QlIg7Aaz0EFqPUxzbmemu1MfLxLGyQ4enlgqFyj7SMR00J8Xsn9uK7SvTNvBz8uj7pd1pgQK4BRB6w6oOa3+l6rLbtqNqbtQDC6k15mmR2/UwhVV6RGQ900ZJfQZEpYLMqKCb/KXb9IrOiZUfMe6KfPhecXo0jzggIMx4NOm78xgrybY0gmQ9cQXra8Y9KE7QzvSWW/FwZvDoPknTiMp5+FfFL5xfR5BwG2naQxh8vFo02rkGKgIyvFWQmrLHPzUWu47MV+TheN1jBo3j95Hvs0U1qYDo+2diFQ9kQ8/ZpgoIWU0NzGA98MDtrQ4MuuzU2EhLxpheXX970kpduuvvsbES6I2QHkTi6EcMkLTVNWAQRpBJLmmQniwxnlRZxYTdwPe5rjkzQDVzOaPB7HZMt2+v1vtrpqQl/u6VRDlNmw0WoLe4XXOGlpp1+Ve/qXRHrgYvc3PyAVBwGk03ZWqiNWVaAvKfSNRLUipSivtaKlefKEaih/s93K+jyQwvskFw3z/ilKp4qCxyOggif0TF6L5/NaNrjfADiwiQ9hoj6TPiuWRhvIyI6SeaSElCcwSJ9+HduGDFYDdE1QX2GKnZqOxZW8BBMTZ2InH08NLZ03bJlLF18rLS7AsWQC6Po9goOTD92yspDf+3g445yrRW3iQxFF9Bf5CeSVGlADpx+/wVQCRp/9yn9GqM24XPc+lRqB7mVQJ5kBU+VADlaBbSXlNi7Q9ZIaR8oILHOejP5x5qXns1OPBloHdrgeSNhpal/Lo975q/yfUX+AHJ8flGj2V+3PJb6+yL/SVNwcUmM0yF1X0fhrzT+qAX/HDeRSypRhTaEtEAEM0DVShPJm7tng82A36NM7/NDwN5dJfoF2Y/ECV5O33ch/FYxA0w0pjI23iZ/N+d6x+3IcFSoZlnEOYCzSHiCLhwhDTocWWkZpiPYBDRkcZ8AuJ5YpLxXD2ab9JKk1XZK9pKqyWR9O9ILH6fsajGLS+2I6yEpOFkyMeYyhfSUaQCd0JlV9xBU6EXbcNWJu0opvQs1DrTKkPK/rh3ctB3j5qtyD9y1vPtDQ3q2WahCRiomTpGz66yPn6L0RTXeJDPSUBk2bVc10AV696MGb2AUBIDHovdf2iN7HIEuXTBerYnuGLN+J65hCLbAFx/ccaJlZA8Lh62HJOCAyMAYHIAJs085zTJQWlKUwHPRt1WcMp7khXL3DMjhsLgfWCFmEfGhh7ZxED8+dJegHz53LKU0Df6zs1UoFZoeASjPeDhxGpFB5XklMCkG7PpvvfIYBfulG/XaviNByXzRtiM5THMsHZjGxzcEekQKeic6OLM0at7xcqSZf3lPqIWfxXcIT/m6bqK12av3IgAfW3Q8e5IcxXoQUuah3yYpJWZfR3QZPdTaSA6p2Wxiua8GV2W4bPqxBQfnScvUKx4HNB2RJ2M9+fVRRLj2Pwq258rvQSzH48SUISC2NuS91J1Ovma8jvnoCzdHmLKx3/IgqivNyz8MrF78pgLYIWmA+5I0ZVWbosb8DQ9RqaG11n5r1EqfPtMf7DQGvzqNPOcUTXxYUlvxH0Py6QpqzchYlXYgfYjh2SI4EbXf4lfFGIlEHHOv95Ga2tDCi+6xGxCwe4xqXMbMk3pyEjaBWq+nXssssChFrgV8f7Juz6Vrnzsht6EnfmR7gZni29j5r6T2DTOBEDBHCSW9tC8GG0fDx7U5bz74yA5kGiNuS6X9jGsZGFKhKTxLMRAZrd0H5yGuVzg8+mO5eJ3b0DEuu5CiDUdKSCkg/18p9oLL5PKGr7XhYENO3NcWIdUiVBeq/EjSUFQ2VHhw4biBmxko2bvwxPJiowhXnNryfwi34b0vzADw1PZd/wT4NwqyMTPw/wZSrgQfl1DG75UTVjM6SbzVRPZjoZAG/o6+OKhzLthlE34O6FvJItyQ/uT8AjgJh49ssf8sOyLfSvC+mMUMaFfGFOds0Lr+2y7DMyRd0mQlFD+kWTKx/wpmXZxfUtAvmgkrtd+4qZJkrcFOH1mHyGIoL7LsS8kWmxbK/x2kU+Svl6oEuwSvarTqdi2Xfpp8J+e0hI5kPxkLayjTjzMngAlfKucbQnrtsvFy6hfE8XYmhD9IpnKhGM7B6S9G0HWiUnTxbTynXGggqNUzGVGFYuD+Jb7qLS0DuCwILLrKZkv6mP5MHqCIZB6I0uM5bQQ+HKoCtHav3NJLdvJe/EfrnFaM09wcFMB7WNAII8PCVFAn94lcl7d6rZP1zDWFN0adlURJ8NIqgTK4Le5wW4cx3Co/15NrIQ2zGPHL/8k5//fR33woNmlzXYs+X7ppYH/ZJmkKYlUS20Dj2VzzV+4AtLzBuaoKYTJ4eIYimWOJcAFPTPZ+HsnmSImvXf9H89wjLH7/dVX3C7eXD4zikmN3td10IVzX1xuS1xMoSxBFB926mm3wYjmUV+GQu/1Q0N1bEpuNq8NOBTAm6Vt+7Z5OgKU559o69qC8WJSPHyBqgFeb/xKpKX2hbTn828JrwJdgWjn/f+nVlPpgNgujQbnOjf3umqKprFfCYVcs7AAGHZZmrlA9QOQvLkKFsHuAWHKDdKJzKn7yfBK1FibWu2M8kAlEJGu9BuGm1S88JlA0VtvXSNcwcAyeNQdAedJnJPAb4xQ5uhkjFGAW7V5JVjLwoXOIXSQ1jxsJvIm6qRTxNE0AvHlJ+gOfpDzSBYipwt64WQ8zu4XuG17oXJJ7ba0m8HnZvazgUDChO6XNLJlMSkl/1R918x3kyYzVnx/OW6//MJpBgm3xp2MZAWF30S3mWS0ucFeAq67jSaDXMxP4q4DLFpi7z4fDAYFM23B5RzuFX7VirUrVR131Pfng5isvfWlBBPPyxZo6B+mJV/6cp4fJP92ZPTjeZQDiGkUqokP7cOI/9ytrjx/aHboVa6LCGWasMb2spO+TjQRyuI9InkASUSTcNfyveeW7j/ZHSlpoZdbHAQSYnWA5w8rpuem/v6TCUkcuR2ktOH7NMW0qi/+aIQzPPNNu+2Mi+5x/hm9g+H6Evt2fE+bNNF4rNWHoB8vyLDdE091QDhrX/FeRLxyL+6qJxBzc+rs1nw/NNSDBx/I4IwFI6pWGaTj4paE+DibMUR9xq2kUr9NkLuguCppTqRmWZb9+p6Pq+xkhMW4wpxBFIT5wNEbksLk+niL8Yx3Z3+LQWc7AM4ugY0CUG8QlJU8RqzbPPLI2IH2K2ou5MsR6nRY8VCSRwusJqnLpfFJyaCl9YGK7fCuzqGF3MLCcIqk6Xyn1ix0ZCseOtaXF7v1q8qcrnimvvjRzkKBRaUWvjKkQBEJCwSpVkLlkSAffE18dAtfDlrcMXJl/0GPvDd1RDYrRrRwrI2BVqC+WTqJ+mw39XEVQq+Qkp3JDtUqO9Q+qaZ36uDrq+9m/NGKSMh0tOqm6+chqkkPKy8kwR6tcMvds0If22+1Sn4Gm5SXw6YTdW6aE+zOqD7ohMDCHpdTiQX+Lp/qRSMi6pjZFf6tmTB/R+L3v3Z1C3Hnmi+JxkCQUprGbNWhvutpWE7UoruiFj8Ki8L7r81JY04/O2Qu2vvtzrGL1tvSmghE8nU1HDR3E/+n0RFiRSnHUpgChmiGtKB1t80d5O477x0HzHmT6fH5FrJegD8jU62V0Tcuc/ti6egp6sysGI7/SV+InHQwmj/rXLfjmeKwlrT47tN+O8KPyBKtuJNaeTU4A6Y86EY5wkt0QkwrVC0Wf8DIRuJi9F5YvsuKAXG8tuw4t8YT2m42olatpq+jK3yZeEYSr4/Oke9EiNWAX5OQOsQMemjPXiXO0PDfh44/kgLvEyZ1yV54ocUazgwR5A62sv3fIKvoYQPQUEsrwp+fQ3mD7WdzNWRifUm9yL3NVOnHGlmOzknUt0pWM5ycIs1AYQKeBAu0s9+Z0ba7mWa7QreTP/14Gx/2lOaEJmIAdq5efoGWopEvXyKHsFKV6fyFYLBJMDLWmS0rPoHlexFFv41/81K1lx5RQUSPQbL7CTUjA5Qq5uC+UvikCZeSsbEabNXFo0s0zvdilWjeYpX4WxzLL61GtQXqE1gmtBY0iq8t/BxyI880MdKm2N0aPlbuhsWAvdt7CEMs45YAOeP+fhPilrXsE+qZRIyCYW7JvA3mzuPfMnfVoL4sHkSEaZ5HUkD3MGl3WKdRFVPALHdMqsgOu6Mx6YsCOUZ31LoVbAUQsR55PXYgQAfutb9T827utJSdINQ7+ITZeM7yECpqdPBnxfT3C7cgCmiGqq5OllsYP2mhh/OXP92h/ZD/VWM7wzN/VNIMlBZzOUe+kw6uxy2WhxKR4ts+c0mhWgyKyZkN3n71iGjAqK20vRflf4zK3fd9T3EStLSNgf6NsT2SluWk3ni4u3aeRLuSztMlagj/M1qYmSQQRQM3Ki2MEoIbfyScw8I3Rfw/bWwW3fqv+ptOE0WVXxRyPCIDVIXLp/OHpLuqZyGtT0NyzmlhMKGf2lRN2WqT/PdjaeNVw1EJkq5p73mFAlShn9aNkFNAIoAvAnb3F/C6avDtPJ42iXBYhvg/einkIV8MNIX2G4WkrhZP4ob3kmd3A1y5nSFtAJ28guzgxrQhXe9yDucRY9xZ96Zo4rkQLNkFX4jKKKVPboaswW8DA807Gk8QhPwbdDEJ3fjajHCT8ugMYir/9hMoqD+08+geDJT9+3zNrC/MZDiQw2DcHcM91VEpECbXecyse0wG4Qp2v4EqBoJK0k7ZWBmc5I0/Jox0+AqXeoFAtevCTkSMrDc/QV49yg7plGb6tFccn3uBrnD3fr4wdx5FjmsODBw1txgnJq4hadKeb3qysj0VXYpMdjTXUkaO7IF4fOV6VWtStCMPtnGXIje6Du2vsr2AlulE/PIJNxeEJYjtseWfhmGD4sZ3eZsAUE/BuBwerjCYQrUfkqOZL6S72t8Ccvl+NmWpL2ToY0eamVyAaGd48K9jmuARokFal00BTR8viZshEiSmyVRKBBwCL10ioD4i6WYykjIP9k2UuMODLOwyRVUH3+WbMvo6s92vJud8iP78K7667KI6AW36YgoAnosyaCBpkLN49k1OaA0YXgb2SzLwCq4G9SvqTYTkZBxyezStaijktRMGzFWsQUbl6jD0B6aelhbe2G+oWehh7Y1hk8nbxZEAomTxPYzrPG+7+/H79TRNp4GC6IqPkNEJ99S7qZ2p2dPOS1OVtsK5AA2LyXuUkzO4oOMCRZ95c5M5rrT0vCRBVg6QrJoo/otRkNwDQzIj8s=

KEY PEOPLE

Albert Bandura (b. 1925) American psychologist who experimentally investigated observational learning, emphasizing the role of cognitive factors. (p. 215)

John Garcia (b. 1917) American psychologist who experimentally demonstrated the learning of taste aversions in animals, a finding that challenged several basic assumptions of classical conditioning. (p. 194)

Ivan Pavlov (1849–1936) Russian physiologist who first described the basic learning process of associating stimuli that is now called classical conditioning. (p. 183)

Robert A. Rescorla (b. 1940) American psychologist who experimentally demonstrated the involvement of cognitive processes in classical conditioning. (p. 192)

Martin Seligman (b. 1942) American psychologist who is best known for his theory of learned helplessness and for founding the modern positive psychology movement (see Chapter 1). (pp. 195, 212)

B. F. Skinner (1904–1990) American psychologist who developed the operant conditioning model of learning; emphasized studying the relationship between environmental factors and observable actions, not mental processes, in trying to achieve a scientific explanation of behavior. (p. 197)

Edward L. Thorndike (1874–1949) American psychologist who was the first to experimentally study animal behavior and document how active behaviors are influenced by their consequences; postulated the law of effect. (p. 196)

Edward C. Tolman (1898–1956) American psychologist who used the terms cognitive map and latent learning to describe experimental findings that strongly suggested that cognitive factors play a role in animal learning. (p. 210)

John B. Watson (1878–1958) American psychologist who, in the early 1900s, founded behaviorism, an approach that emphasizes the scientific study of outwardly observable behavior rather than subjective mental states. (p. 188)