Polyploidy is an abnormal condition in which there is a larger-
In plants, allopolyploids (polyploids formed by combining chromosome sets from different species) can be made by crossing two related species and then doubling the progeny chromosomes through the use of colchicine or through somatic cell fusion. These techniques have potential applications in crop breeding because allopolyploids combine the features of the two parental species.
When cellular accidents change parts of chromosome sets, aneuploids result. Aneuploidy itself usually results in an unbalanced genotype with an abnormal phenotype. Examples of aneuploids include monosomics (2n– 1) and trisomics (2n+ 1). Down syndrome (trisomy 21), Klinefelter syndrome (XXY), and Turner syndrome (XO) are well-
Most instances of aneuploidy result from accidental chromosome missegregation at meiosis (nondisjunction). The error is spontaneous and can occur in any particular meiocyte at the first or second division. In humans, a maternal-
The other general category of chromosome mutations comprises structural rearrangements, which include deletions, duplications, inversions, and translocations. These changes result either from breakage and incorrect reunion or from crossing over between repetitive elements (nonallelic homologous recombination). Chromosomal rearrangements are an important cause of ill health in human populations and are useful in engineering special strains of organisms for experimental and applied genetics. In organisms with one normal chromosome set plus a rearranged set (heterozygous rearrangements), there are unusual pairing structures at meiosis resulting from the strong pairing affinity of homologous chromosome regions. For example, heterozygous inversions show loops, and reciprocal translocations show cross-
A deletion is the loss of a section of chromosome, either because of chromosome breaks followed by loss of the intervening segment or because of segregation in heterozygous translocations or inversions. If the region removed in a deletion is essential to life, a homozygous deletion is lethal. Heterozygous deletions may be lethal because of chromosomal imbalance or because they uncover recessive deleterious alleles, or they may be nonlethal. When a deletion in one homolog allows the phenotypic expression of recessive alleles in the other, the unmasking of the recessive alleles is called pseudodominance.
Duplications are generally produced from other rearrangements or by aberrant crossing over. They also unbalance the genetic material, producing a deleterious phenotypic effect or death of the organism. However, duplications can be a source of new material for evolution because function can be maintained in one copy, leaving the other copy free to evolve new functions.
An inversion is a 180-
A translocation moves a chromosome segment to another position in the genome. A simple example is a reciprocal translocation, in which parts of nonhomologous chromosomes exchange positions. In the heterozygous state, translocations produce duplication-
653