Tackle the Test: Free-Response Questions

551

  1. Question

    yd+UipDaW9+HWKSHwm2r47VD4L1W6ydaKmML68k5+Hn7VfmtspDe9I0WxmdBui0ySYBfYcSEMNLRRCVK2/Pu3VNiuHxl/vG5v0oMylbMXEcqElZa0EKR1aXOdGGjo9naCHiJo4Wh1NlmN0BPA2XxVeIu8gwHru2A5ndUGLnIR91JBnFfNptyYejsgPPpHNe3VSDFRvG5uwfFK+E7Laa43aDi9eb5tVQkGNmFUJbgKAqMep8uOafH8VsABuC/EJapJVpA9q0UkWV6YNChmnrNxEQrwNXyjWF0kBofBKbWNFomq/tNVQsqeTERBeOqFQ6nklhxT9iR5vyPxyjyBzJofQaNKljrv61LPdKpzRv3gZ7zppKtKsO2+nmoL+S5TWGzJRVWb6ZiPwlqxXhpa/D435U8zRHNa0aZ

    Rubric for FRQ 1 (4 points)

    image

    1 point: Graph with vertical axis labeled “Quantity of output” or “Q ” and horizontal axis labeled “Quantity of labor” or “L

    1 point: Upward-sloping curve labeled “Total product” or “TP

    1 point: The slope of the total product curve is positive and decreasing.

    1 point: Explanation that a positive and decreasing slope illustrates diminishing returns to labor because each additional unit of labor increases total product by less than the previous unit of labor

  2. Question

    UaaZFWbC1le2eIm0Smoq7z80fPIxRdPvNAc3orsLQ+8yy7JUGNfZ/Shk9PiQYFiFyYXYPN+485fA5oUHvfK7Hzb4Pe7H4p7v/VvMDBUNHRlxCUURGx90a2jP/mvjkKnAqXtM+aXlV72BTFiV8OiV6pfWEzx0HuBTRqZJQkVSNQzeP9YN78KaSIZNu56bIAzTU/pJkoATCyWxQNXca5mFQScJXxEJH0Rid/gsQ8sOuP4FUZCJ0qef8dxyDGDmKhuahRf2EoctPn8n+zVvI/l/p0ROtVpgb0tsVUSt0jX/w1R2YJKThYPQgYM3sxDfRb1TZU7zAZwFtclPqT+hS1xMCZWmq11CS0eWmurInSlZmwCF1aybW/9KJ2HZxeKOMg8RsQ6tETN9Ktx+zgmbowosBpjcDEXQt/cJspc+EIjK7un/7I57sSe+0NCpdSJisKC+uoxuviVRZqEJC6Zyrr5KEZY+YN/vPmVY+hPMAohg+yFQSobKiaQ5z/+iXakOTMO0RQBbOgOswNUAyKCwtn1e333T9cl2M7rorMgUU7YN7NpO/v2dBz7lwH1SFCmJdA0Tu9EAoSRtMGRn0rVntBBnzGIos5u4bbz8g7T8gdsAcszwA18/g/Rwpm0VAolPI7qa8nhr2NNmAx45CA6cPxeYnuWnmZZ9FmPVupo76czaLPKuGsMYvxQXH756JPWD3VJzhWOe6XS6e5OPw3P89hMGEPT4H/CR72Dj/Xb28KyrQg0c6WvcbOVnpqZY1kGScETdBDjt8VC/FGxUxN7/+Mqc/doHl5avZYAGZSnQGn26UpDJENbKap/dDz0iD+uxOKqhqnDXJHdpbc/AnVa0u2SgoU4z84qsm5mMxufxjOcyg3Oi39IArNd0gu+3P68hxZ+YS9OY4/BFquK2/5U0/yA7Mp3PiCrimFZOqCKAM1TfLk59mo6droqAucMEgS0SgqE3QiNQfmhVPxc2xhQGh9cFZXmEYdoNlHPWsSMALsXuuqDd5vq9giMFw15G6b1VSA2uRXjefOeipd43RmEUyWZeE+KOosVO2F/LRonyyqKlHg/gEwDx4te1LvLjTw9LgKzwaZWzdSZiUysc8/7Ksunigpl3qVapKtSBDqBL61dDJLD0ZFv7D9yB861mcNDyD6VP2k3SXBYMzjpdQKPZIJJQ53fzOiAP6FHiO266vlu4c43xTeWaGTVCrrIoSgQWeOOM4CLcwgGsfurrN0HOIzO2NE/4TwGh1+AlLU1OzTmSiyvnmPpU0DppyKPzLmpMqFqsN20QBV2BMPxq+uCFiWQVFyC9pfn7E+UP7+cMQSUgrn81dDSNofHfPo51lO6NnyeTTNtBuQVt8jRyzSrgl3nw0ISmZZkmZqJ1XjOg3WaLrgtTQLEI29jrfsPLFYk8AVPzoS6xF9QkDD3J5rkz/5mG9qQKTEFRv3Y2iRWwWYyLxOUipHTV9UAkFEmM8aNTGB4q+tt585OrGresC2nbu5hgvs5gS+NKEeDP2+Klx+zZW8Z+fDc6HNe/PvivtGTPyOaYZHtgsu+JT+6Dur6cNJZkb0qDFpEeZobAFNtmGMQuhcCvPDoS6lCpJteyrYSUaWcO3W9CZA3RprEm3VWjtvJxEMxcfSmh1Q7av1UVfgXGL1UCiOIZ++PugFCc/YooCuFeiPcqCSwVEuiRd8k62R5kjQdWMlSlR2ZZMBmxGYBCaRwdWoNZPE8BiLpukhqRDcKN1feOX7Ik28XmcxXazGfuWcsKSozNEzoqrutY/WnlgL6ktSVp1suaVV/QcQ7gRBkEG7mLnhUokeiOGuR1NUpdqcP9TAazWVhKRJKkDmyk/8tuEYnasW0Ip7Shw+zH4MiphIZWOCW8iFFSEF+5mJnTRbO2UB42+MvXx8bltsNd/Q/6up3h6dxfVktWMPixRROSws0dNY1SoNuZOTbFNTSMeLaTMVT4WSW1oUFQGl03+UKxeYzWaOxKHHDNleCDT1lnaqZhuKEqztxLwUgO17cFPaKDuumCTU05nMVKj5ajeJDQJBC5gG1+0Ee2nssdsKCoYd+Ql2SFapW3iDT7IQyL6c6Z3xSNWJBAcJU1uMVhHx/4GaEU6E3DS9lB9CT7LznTTRc1uURXQ43byciQCs2PRY41/PoILhx0tjqp4yOdE0of6/4Ouo9IAw/afyk1tsHG4Dsy+YcVLYU7YHrHLGrZoCMcxXsWnudNJILV8+oayEb6/xuy2EwImOHgQMQi/fK3Qt/kYS75L+5B5F1/+1MwXmQngJpvyRgBg1IZQTcXTqNZ29bMsGPOvdkBmd93SjDEbPLl8JuLnnIK6ucTLns97bUMsV4X1rPAh3MjtbJd6FCLO0WkyueuxVAlXia4Tz9ysXEVedsKXRmZhnrDz+UUtwUV9wtqd2TE+5vdcd7ZUIZfDmxAW1A2iuDKA97MLO8Y/rso5Q8WbSJSVAXM6blC2jgs+x9KTNLn00IXoYQ5OPDx4SWKzfMcenZ1uacHhezLDIi05jkGHWM8x45gMgsPlsHvt0v+1ciiNaaMRkfXwMSeUR51SokaKCvMHVkD83J9UqmRcEQunTBqSMyB4aEifDPWM36iHygaYYzmLppHAcL0txI+f1ierzfvh4MBF4uGMIaWS/3CwQ/rBNYT6ofWXKHEBO5DffU822gMvyC/WZR8x8FWOKRDk9IAR9V6Pauv4dRZTomz/V829/UMGBvjvfYndqtyNjJ+