Key Terms

Question

Qo2SSb4ig/JjiUqPS02swGjxk6j2OnsxfrHi8wg0azr9zDvs9xOfnJzAofwDDU5IYhOdiwaAO1zMfGont9w92FfdRXJpk6gFsypCySNMCqEPc5qPLoLoiWZDijrrYPXtEhDAZ81v7htGx2H4yP7Fj/do6d3aXbn2qlLyFb0b3u/93ylBqfpR8kfSyKF+9W/I+b3KR3jDK+zWIuu+bm+1hivyqERhCcAJ7nhqcW0GR4pXCzUZWPw0+3j8pNZxu+688a4Vaw/DAAlltmPK5botDEwEYY6YP1Q8swT4cAsDU7v0BeNH6g5tHSOFequKIhlflve9JhWBUHsgNrfk1XInDB+8xjrCr/XTlgz6QtotazCvaisWUYBOXqU6wzBy/akBOzoiGz1uqmDdoBobEgGxoFk8qiW8/0SJ8xBUBiQbK5nqOclrYoto0fCwL0KTSrsZH8fHwOGpDdyWvs6jXKE1HDihSAXIUAacrFPzwhnZ8DClhScOLwVFjpYaJ1GB230X0N/sr9h8OfgVYxWqCzuzLJDC2+FS09hMTEDJPE734WDIvXK+hlQLp80xu9iI6uJsz+wfn2jOFyes/065r38kVm2qXvbS68CSin6CjytJuSg+aTkjtmxd9VhzLQYmdIyPCCktcF5Cm2/uBBG4qC2U9QHB67ruMmarM8F/WCZfJHJrP8qFY4dVIpxx8xL4pMAls21R6t9NF9zXY3FxHri7EdXIQyCgqR99eckON6g6lLd6qbcWX9uf++Xhkp4wHArA1DP+zrNuR8dp9Aq4w8k+I4OM+vOatWY9EpMC/F8lwQhNFNSyOzXtJYHzXEVS8+7Fh9jPWxJCErtD2+Ra1B7O9USH0ZaY25UoKDG4F7Zv3wsi8KyefxRQ38blQsoYj2f8pCR36dOft5wwH9PaIlUtZgjZRFYV6sYRjJA0/4QhNC7A6V/dVM76jqXyYyRS3dhbMgxHI8EXCJx750tL31+9XZPQJp7Vj5sL1zXE81xBJQG713NQFK1ayll7xusVnrA8SkTke1pfQaRuTBimLSY1TDigrZ8eGZz5QpCSy+1mAwqO1aDKoF5rwMa1LGyi7gnmkjNVlY99kjWkUwLiQKWgVsfKx8TMDefCv9M9lNLZHQ0oHYwQiiINPtGjWA5vvuVwYpefYQC2jHYRBCgUAzjcvhirnzfB+Btuf5RE55Eii0KxRIBml00YbrffKSeIX0Omf/HF24dWczVdjo8KGMnlFSDSVTUy42waelD4AD0IELb+2Pnjk+vLXpCWVaUNFy/gX6mnNAwEYEsaEFrfcrnL4PuMm+qi8fOmT9T8aLPMhUHBAfsr7TV/OVmKmi45ntvgX9bjT3FFpC1meP02PXLARKQvC6z826YJuh0rRtX8stOumMJ/nR/hXqge1TaGSDPTIVmp79n98a2/JGS1UjtpHUhEg94msVL2ckL/bXWk1h8YNysVk/tX5+bOjH5aNG8Au8LmRHsBVE4Ni9ioFC2gZeVCBVDC0dyH2258PDL1gpoLzyUJN7rJgiq3i3xP35aWupgexnvGsWP7z6/KhwfQow3xDHZ9RZfjNhk/d16DvDOmrJBVoC9gyzks6VVwxQg8tOd6qRqY0UQOCgrBWz1QZLyVyDbPAH4reMKTmiw3OfVLj69CtNQ8ONI0Te4jy5oVhYTvuZN6s9nIZx1anfTyKXOPxM5L/5GV6kwI01OOEZYMVHOoXRqxQSAdvQPRazuYsgh5NxlS58iGQBIz/Z2q1GPkdZouXwxrVeAdQbroclIQvwFA5wpqRl1I0mTrfxKLCzPbQsJfS5TxCGtd1rS5XPnRrmawTpWuXnizCqTg0wZ+7rC2KsXZqO+B6KAr1I7sMDYX8ySHOFZxxRjuTOkxIMJ1GTuutb2xukjyiP4dIWrvMwl9V1RTMMOf2mv8iVinUJJRrMDIs4SMlWePiqc5823mHOaWQaQpIhWLG1oPMJOSb5EyTe3VafZed3XgEs0KNca+uCU59X+YnCgl8j/VULoer/qhIDjdsqTrRISOJrOOvINfgM/kn2/syCqyjWSoe+AAcPxEEbcbS6lvM0JWw7/qN3vKy/xGRSSXm3kaSpE/g2MCvePiQXafKtBmpA+6gfcdOtZI0bQVXmqrfCivDYQ/ahpj7Ieq8AVh2yOs7zj0Wcl+H9Wr1LFjRO5i6c+XYDcC/eaTGUmZld8ej4zhSuTe3uiUYCXYJfvPtCm0Aqic9hxSW7yreqLOcG3FfqNsgndbMHd1M8MohpN2G4Um1qNJS6LqPvl/WmPp+a/oumnN3r0SOENhE3xuV28G2Ktah1eQOYZtJcLSghfdLcm5tr8JmCHmtJj/YYhP8oYyZULlcfduFw5UbQr05x3NV7p850EWc/0Zaw6H8ExxPRK7UyLcew4ozO39ou90alueYlx4CVvZO1jJnbc6k8Fou4BhRlNYV640AEe5pRDaW0b/OaSOcKdZj7l1niB1yRU2W8pMnVRjNa/7kJnJy+UJXLhpyxAKG5HbIN7rMKH22d1kpWkmMs5XdDfae7H8GoJxdSZeG3L7KrpHh0Rr7w0gvl8WRCEFzhp0EwP+fyoisVbibXASVq5AXoUGMpxJE1wVe9SK3yXau1ewyspp63ZQHL1gjYyJ2MHmNL3zaPguiqzsbiGMIfpEwQEQtXRELLBpJk3M5gcm2zErcs0AXwlFxU8eV9DKEGTbDJFkxAZTvHLDzsauBahGLtUSzEnT/EdR0SiouS4psmPwIqcivuU0299PafcsDFRehkhFZrZTnKmFGCzvJAc0YPpqiyA2LIGtcIL77hrG0uru76u6pMXcDOzTixdsMqlJCLlZrdmTI0HerBiVPzVYrVXGiukl8PTNr1fkKuaSrvJKE4tIF2uSoYZFICCdd/nBCb5kETj3o2IUCCIPknePuwqRsOsBXMoDCldem+kzTg/iz/4unwBhcCMjzksxSYZPlj3q3O7No9hHYZUI/xNf7Z15cVfKam4DJTEvAZwjKynGMdlYc5avURd2PSW7JqGhyzK/45KcsE2wNmzRVmQE3CS71YeWSdwP+EuHThS/m5t5pDWtYuUvnnPgiUU+ysmIsVGfmPHknn2sD5/RMMjpBZbkpa6W2KhIscFc4oNUvIV7pa7LPKq0JU694YGv6gQ0v11j/aKvZHew5OT83/v1unEDptbTVlMJoN5M+RNGHc0glfxtjf7MpR6ETFRofuxWEyk8GS1I0DaLK7Ne52nazfm34HpMO4lks9Owle1NtbQJcNOzKyOiZJZfHRe3rRTGuIOBYuJ3cmrs5NCwyky5+DOhnEJRKVGY/4V4jLczMMfK7Jrs1Z0E86xaLqaOs2Oc/u5PtLbARQbxoNG+zH3NJxXuYie1R7AI5ptRceOFBBstO+OVeObvcTZmamLZINmFJcRFNlm/4DWpGDJA5bMU9S5X9DIIgGR56Y51EcpLs8Rl4LOp6iCbfkJLD/S62IJpZkieVGmwgJPyHNBTZhaI/FRbbzeUYmpqYp7+6SEatpQEdTrMb8PqqgZqPbxFz0KDJ7syC+BmYTgm5b4UmMpZNdgP6mULdYwNVQ02cEOZZnlEf29Dk7Mw5zbc8I6yjUr13yTRqhjoAnHHINbUieW8Xsyufle9rXwMzMrFaekpaXSMPMM6bU323uARBjfOgtmP7la6PbSSPQKAllVfWl+Sjqox4+Mhuk5pv99IuYiPjpMe8ekggJ8dezoXPx2ff5rF0/HKSwRYfdMNehheSpjhu0V1IC3uysD70n0LgWJuVHyuEVNbYz+IrnX3VFCeaFmBsMCujijpb7WYph7dLZ1nlJzdIMwWk5c59D0rC0pmoRV70NbQ2xKEQ9/VVKF1iBWyZyQxvM1k//0taHHU1PwATniWrRWajTqt8FafxoBKHKHoQ6zY2coJqMkrBm9Ooe8uqOStfmS3vA804pUH+bOIza8/R0ws+q7OJgEcLNgiKjueqAEUdeuempMONmeuEr2gdMeozgMEMIG2p3JvpErUyeMngpRbUfaIk2a0fXcJ/TlsdOCAso73BZ1LK1kV7GQ15yZ9g8DNRngjAUStr+ye97MoOPareANPzGuvWcLzKoAAD36nzGkRAtPx2mNuM5tEr5ioci3PMG1nrerb3NqLwial0KL/35L0OBQ4vOxFWjZf/7fMPXdZjzIxYHpAnzvYZPlYLaXWqNyrEyUAWVVFF2vMV7Juy6aAmJvF2aT60D/wnbwBoOiqPFejTWkH8+wePH4m88be84hj/m5+BI9qobL86C+ujeC+YsJOhbSwMLWUccm4dyZTxjPh6JWEB2hcF1ydr0MyAAP68ZRm33RUgw80Sg4YHnK/AR1VXOlo3F0YCXz9WKB9ovogpnHrklMPbGrM3svC86bpN/ehYp6Pa6Zb1tEzyTuNnkNpzrqXVR1mFnn98mgOzUvF2DvcL/+fd+ZyXWUE/b0zcTt70J5uRf4E1AI7NoOTxCT0L8EiczO6G8KjDXowhcmyacFYNC8uUrpz3buGZpJbnDFsCa+/XYR/mKoS8K6lTb/b9cQxHtpGU+Phu8gqIaTHski+md5taBVddrV9+KJo3MiVT8DyaqVC9BNucnQp8P3fBjSXPWyV+fX9Zy5xxdgbP1Kdk2jyr5ni2zHXy0Jz5YII1iQE83k0rL+mqxk/4MzJQeoOBJKyG8N/4nIFFAHrgQflfzr3XIyv7MwxgRFXtsTtE3lKBH5fxrDFnVTr31xR4fjxf3ORLyxkGhGIVlduRxK2+FrErpFwVBauSvFwAvWHi5D72R/EVpovjQcq7pHq2QfmpOwQ1LqBdeW9bfDRYQN7dhEq1J2xKvboiRnwqgLK17GqofQUCSBxAOqD27qV6Y5w/Z2ZUyENED3Mk/DK2StLoAMZ9A+H9A8tWb3FK+C1EgGuekGD8y4WVlM1NgR94BihQRu6QpJSD1r1a/MGvT1Y2xMxhjtry5I9juWZmVO7QfGNHOom1g6tOeHX6KcLizRc9NgwWunDKLu+jcjJc0/gIRdOotYIcJC7WJvlI8gwKL5Ibuqi45e+cn6S/8uhSHcZ0lw6mbkSJrBMc9DK7fnjscgLkS/PyX5xgvdKWzi1kl6Wf/bdeTsphi+q6+jrne9+5kfCD6D5/wdjSwjjkrHIjtEbAnZCRg+OUstL67dvKDqsLZtxAHT+t8VQpGoGnD81hvb0BqYgPX8EvVGbOc/j0svYsNRhOsBj4iXqCNVpazTL0E7x78IataAhqUJj2OIHxDn+90Lbiq1GKVmN1blODmBNi3LVPoYjZbLp8Gy/esUaApRVZ//SIDpc320dKrcWtP9gM4Ri+1+sPGdaa+AusMxQrmyS6L2nssQ4fzmkxrkg0AQEgRlT6bZXCe7l+OsmVptSC70nVjQa+czR1MS1pDOTIjd59ktfQS8qkMBVTbtukNJxRp7XUOhHJnOEC7wIZqqIsTdF9rd4wuouzreHhYUpeAkmQvYopGXSNawQsyMhppehR6PdN/N0k29ypNo8SA/oqPFSqRHUs+ltVh90N2i9KHvhd6z+PTlXd8mTnvkIP3B59kY8tl4/AHRkqI/piEO4leDG24qQBvOtImLtLtfgJNEm27fK3MASN4ysRmCjH5tkao9Y80Dz9kQHv/r4Z+075wdcyiR+uS/vBRzgu7ZjPYBb4gVJRCzljmKpHg757oJN0GSG5jyQ1f97zB9UDVQK81gXcGg42xm0pNdBH2hVt1NXAn+/B4THYz0XIN7ZzEktdlPlJuoM5xdraHKmSexKDLi9LW1+PzUa4SYSuAoK0kWXhgJblMkQ7e06+XjiOV0SADmcgwujg5uogh0o/nATopRjw/qATgWuwe4V5jQtOFOO9n5RVBYvBEo29Mnte/mpwa78zSngB/yHnVVAL2m7ee+jqtA4jyhe/qAgkHSeHHtaO1+LB1DJcQ4U0bbOIz7EKJ1Cvqec0swykXq/tqZsoIJbs7rjzxDxTBSmJya8CouWAfc4JwOcR3xcONO1UuFddzCdBXywYGOzPVvXnX1M+8VC7pNMB55PjodtqA62Btnx/spArAcSUin18rqLgfU6PNW1RP7BxBZDFxe6TY9aQmH4dBKQUwIzVYpxaOUzKFXBp932RF8b7N/IY6ndWhwcs5WdsaSSXuQhQdNQtCCb5sVEmphDLM5APeyoF+EyyeI3vvWGsNgV75scgN8u29HNa5DCU2mc1n4v91tWD8S9e1VFr6eTncCFQaplbY6j+KooBMu4396k+SNgJPtSwswoPQLnFFmAvYWmJV58zNRuf+8bF+l5GZ6x1Hd6hV2lqCNufdgJAPW2yRVN2uhBSRu69M1bueghmQ7okdx2M4s8m0WQ4Z4DXDIOXHZjY1++NlH8oNds+CO3q5MhlO15QFdZJWGFDhF/MpjDxtR866gvk66pb82N1LLjnLREUMHf55WdYBLee3ZPEvuJmnasYKQv3GQ5P1wNrJrry8SQzw1Z2yq8gCyeOR6plVaVXxAn9BO1K07yEEYy9RLYe1BpnI3y+O4KwxOhQZCqh2EqA0W9o1dSUb6yvuS4iYIFAXDaDwdws4XyA1E+gQYS4oIfmSa9UFH+ZsqDS4Fmit1cUyPyEPKEkaekQipgCjQK1kPgOF+Buh7syQ2U2+CFkzYqu2O2Cery4/S8DdPFF0p8lNttkwaZoQJJouIOfljOsuoCRTw2N5P430nVFqIKGjUnjbRQRFl/zCbV5zgtYMl7GhotO9H6mxvt1XmCz6BLsFCb098zE63EZ0yCqIDfJukT5rZXsxu6PVkIilWai1tnojgi2QOKsBsLJm+yt7g/QnnOgNGa8NLOgdB54Lh2sDcHPLMxFf/SdUY3nJcPuQIYOk2BE5QTxvSEs2VT+i8124B8Rc+47YrGC/LuBHMBtdYAT1++3Gmys6RB/FDOn1/mflPH86iu6OFVg4sLFPsO64NFEzsMGwZbxAFImLY7B2SkXKt3VPXFCz/7eOm6LcAL9K+M2hB6CZpZ7LWLUOBrVnG3RbGH7rXmP6l8rvrzLNoRvDl/5bDJLnYu8bcM3IOgX0cASFeF0WyGeReUtDGafZWwnOov5ZVHSZFYiZVJw34VyQQsZJ6hJrs+qszUyrdrlHAwMSqdPHv8gJcvnuS4v46PSSbVW31WI5nLedzGyQSjXh8ty2nX64bHdNoFrTDZWS2M+db7PgV3ux7bSzNNWYJTMe7o8z/kJRxQJgwVq9bXrp9tumj84OzZRBTGualIZ+O1J8r/tgRPFMz30tFBtp17Hv95Vp54qkSkat9zzJAdfT8ngcGHJ7xF/i09FRlkAGx8WVE5ohI4idr1Dj1SV+ZLftxhEFcQJ3cxVfirpS4aydiO6NPh/mZCQcv2c5/2FMSdt/K0PtnXr0b8e0Wub5u72e0cz6dkssyaKq4edPe4/SvTUuSwRVD4oxSF6CtaoIqy6RoHeIAXXVAov+eG/KzjLWPoDlwTn/vZcahK9h+czihkDopNzyuYTMWlT1m9RELmuV4QN8cxLNllybJsblFcLxT1fOYO+o5FB9vP2SXVxzFX9sfRWErt1/wtGxlAnjqpSJvdKZe0NBsulH6MDc1whKx4DKgWsBMwaSckLOHX18Xx3nHr741w3A1qgoxYGHg/A3XT7QzuZ90DtaJncuY4F+nOSO/LDiP/puuYoz3tYzSLL0kTQ5uXZN1hcI9FEoXbHQsxMqvnbLaixo2u3f0vSbDEBqELl27kxr5ht8vukLkisCJqErE9DTv0K9GBzVpHEMufjHqxeSzlLjEbYBi0TNGWIJ/7k/PpFzGe8CYyfWJ8VBtqwGdCp9YngIEWBekRm8oW8cxwcEXrxoz5grg5N9ihByq2eySqaHsgExa/j4wyPCZk1ySJcidNOuieno4dnVpxkdZqUmE07eZ5akO+AxQ4jKcjBAhJ/7KB76mrt/abwLc5uYq5DS5BPpN/+hjKgRAznmwGqSVdsrNgU9UMSDVJPci1VASxBycSS2g3Wk65cFpOdP3WlP9V4IhLm1GM2jAClB4kXDm2fe5b4Pfu2K5ypoGPBoycv63pyrhMqzYZBM7nwLMCsPg6AK0zdwPVzSXQCksSEsTZc0t9ukQP0RY0UVlxnTTPaP4I6BIhyNnuPfOmB27VJov+yBMDejDkXrHNpZx4/pqvsLt6q6j71+zK+qUb9/TP0InTXewN5T5h0Gugqd/YyuqDkTsVk1fOWfhfZaQAM4vDixTsWseBknDT0Sl1b/x1sFeLCyLulMpWntRfZrxxJAof7opL969otlZ0mKgqm/vIJtz5th9Y9aPmi+MAp7fNx6m7sNv4pI5458mecmv6/A2B8AnDX/BHlpf0wzq7ndKH2sG3IlWq4sIuQfvmt21X2AaBLTELOT5kM58WhQOg8i6Q4XG5HWD/ACc8Iipf40w7ChDV9gNKzwX6dxK9vzzNRN4v7RXKudTcNl6wynTGr+yDLCgAZLEBd4//a2ZNZd3FLtpKvvUCjuOT8hrbbM0p7nlXkIK69VZZabbd2xNrzAVblwjeJSdqCben6K3QzRnHVNn9hLrGLghDkakEweJjMhvuN3WrtanB1x49mMdprNcZ0EhTVPrxelFtRQv3p0TNuk2HXJ0Y7oWbOV/cMTrR3zFoL0ONR7QK/wrP2K9aJY2L4P7/JqhscIZksKMVJt5U6vGVyiSF1fv2tiVSf6NLQamEqf2Jp7NuXqzGXGU08o70x6nzm7a8eBu7Po2lv3hWI8wBNl+cGL9gA+VtlvMAuX052R8ATZnMtgZCcH/zk1LufffDI+/SciRcOzThsguTZ3cqYBRtzN7cruZqzjyQpwB4//lIMuafxw6mADbS+uuhRk0V1BQ4HDlGt/mGwSyWSvKBngmya9V2WMXhEegvdAIhPImGn220N433VxoB5RrgkDdX35rq9pnVt8Pu6Hj3Izfeq9kHeJcRUE9wZjZYVyl85Wv0dBgFsgmAq0hZP2PIgj0z0a7HMxh4F5OVQjwL1dR00dayxeDvGsufRSgVUpKqO+4sUJuaJ9t0H/CXRNT9m24knW4SZrJcgZhtwIgp+b2xe3mq/wCpCzHzftL/bAuOGn0eIJxKtbvK6w9gio1LodTz4FUDvLR9TS8OTZa+kyjnYNO7zWqDvct9de+QTPEN0Eh5DIkBQnEfndlbToJH+P5j8003In9Brc98DfY1ZaSaMCgjMMW1YWRjGmh6GLsuivpGGhX7W6hJgjAaSTXqirbvkjn4C/tCA88iKAvUghd+MJWhG96Ln/ODhNhR2sT3Snao8Rx57Km+ichu0KiB4Fus618AjQIBgbcRibbf6k0SlcPkTUJOIBz0wkqtBtN9sQKZEiMAnJkwufDXlm2yFOFSjvE31kfkm1E7oD/Og/yh4zLl7vtHZ9dS4UbFnahzY4ChESMQzRrM9zJ11I8SrWnNYqHCUtw0WH/anLUGeox6AqT8IS2AvRSAAnEuqhgWQdv41M0zHWonEWqAiXh3r9uixNaQqULBG93DL1YP4bTJ5JPVWy3hUdBts8wu+QgybwNes+s88ElFW7JrX9/KoPm7yFvagiXlrumRZ/mWZf+rWsUseylHfOZQWSQjXeS7rEWGYfRg9dCZP/BaQwij3eV7ZBiHqjskdmF7zTuEKvEMv11K/X0AdYmDM09uRzHpbsUTYK8Owhq1gwhLcR9fgn3oJLq5FnANOrCy+lXG0K9SqThLbqBlD7X5HjOEiLHwi5AHT8Qar9M1ipDAnfWjOsow230CRKZ1+8O+j2yHuTO7zbnd5BrtMAF6ni7xe5uxJGCrcKCynrML17vCIhehOLbwLazsR0LaEdQBwgUM09It1R4zrmvWhUuEN02+3buOQH/Y5M0Tg4V1sgcC/51NuhPdoZRMvwpDgTxC1306HIGvuehN/FkD9ZiUt1mwa78s17lHehzAKfB+7XjAHKAOkQHm

Competitive market

Supply and demand model

Demand schedule

Quantity demanded

Demand curve

Law of demand

Change in demand

Movement along the demand curve

Substitutes

Complements

Normal good

Inferior good

Individual demand curve

Quantity supplied

Supply schedule

Supply curve

Law of supply

Change in supply

Movement along the supply curve

Input

Individual supply curve

Equilibrium

Equilibrium price

Market-clearing price

Equilibrium quantity

Surplus

Shortage

Price controls

Price ceiling

Price floor

Quantity control or quota

License

Inefficient allocation to consumers

Wasted resources

Inefficiently low quality

Black markets

Minimum wage

Inefficient allocation of sales among sellers

Inefficiently high quality

Demand price

Supply price

Wedge

Quota rent

Deadweight loss

Imports

Exports

Globalization

Autarky

Domestic demand curve

Domestic supply curve

World price

Exporting industries

Import-competing industries

Free trade

Trade protection

Protection

Tariff