Key Terms
Question
Ff2PmV8F2WEd1VJK9XsPqsN+qty3s9SWej+KZmNk/OW5NHc3mMZOsRqtDgkqQBE1sRCTpMyz4G+PCnnWpUh383ezOd6msQA8yT8c851netE3ARVWU2BDw2KtIuUOR5vRuqQkGO2056uwYvHINFwdlZZz+y4ECgxCIj+OzlxBTkRI9LUv+OeghFmdsx4KwY2WmYYSZoqC7clp2YzES56JvAunVpK2QWzMoiCLwkHdut3mwxfL2BK/4+elDyvVMk1ZQIO+RwkH3HgGpRKRI1cqOOanqi/C2ja2qrXoGZy77gOuvVCZDXHYQiGzugfA9LSZ7nP5OeQYVACjnJwTqQFkvIxiMG/9p4k5EI3GYLi/gKeF2XekIFSiiO3Xt8VEdwR2QyRgWEIVRb30upfFBMQNVEPPk/Z25fzmOuRBQ71wrZzq5OG8RYnnnpR5H7bsXDSBalP932WasrRehP/fVJ3z0xguY5sT87vRqQwOAJpuHohqiB10/bTi1b9fC+5KJqg5J0Z+LXjQWNt0TWUDcFlfaMIyZ3QzZ+rc14p48Mhp8ZhIQCthhsHj+qV+Ww5Hc0bjs8tpGT9yv7Pp8wMb5IqLMwSEfL8hzp2K4jCg22gorVkPM8tzQfhkNpNOH05UWnhgJwrJbq9cHJFr7H4vnDaKsOxLcaqQ1IJgXaxMRUV8Eq1QzFJdH+lFXWI5Jgb68a60EIN/9MQ4llgLKvCmjmN5EluqUajPrbfi8Zyj9dtmjyEhfpjd3FB740Yp8YOAFiNSlfvvcKKmJ/cJkP3LLW0BstLIiK2vwrw/oNk7j4r/QDbn7MCyr+6jXC38xg+iuPDOMJuf8P2J6eNGilhWJuZi/HNjYKEpbpjm1XN0dWnGa2KWc9ez3j6Zc22TxgO5u2qs2ujoY1UIrZe+F4XWaSeBYBnWZgj3BbEm8Bw9QS9n//thi3ZBKhEc4k0TVY/kzxLW+prKpB10Q5HJPva4vqGjRlVNdl/ZXi7JKcPF8TRNSQgLXzJ7lgAetAFsvMlPCIpLSn4+Is5PJflmVgKC6DCOnWSjSCl7dwtaID6SuzVyIcUoBMiDzXMqbtsCwC9vCKEmKgzFF516G24KNNkN9pBywhw/ubHelzIURPwOzomn8U/11Vkdy12bSOElD6Xf+mU5iR7WFOv38dp7dHbX4fBUcEsVO7evoXfIJMsuhubC30KWT7ZDt8vjOynFn6qONxLeedzM47TBkdCMc+2o3UleurLTng1QchDxhdnsyR9m9kDiewQUsr3h3bzrIszfKSgvHy09fjDdEsT5TEMtiZU3HMrsFm4FVkStBAC+A03KcEvl6a2tdlQJwmXqr5Zz/eoaxfjtcA6chwMOcOKMyUdOlJs1VOy/7q8z1b2LNdeHk2YXbdxRToh9gOm+D6wb67ygxa8fpoBSKK9Lsdrv9RC1J2120zy+VcDKq4r6IVdE4dg8e8jw0slZAxdYwtbZDoNIRLFOnVlLDrTxx/jsoTYEteIZZSNVkotnHyvdwWjAnH/usXz6FG9DhLGAEH87GTUVvSxXabKQPORv6tLjUvGuw5qXaGcuJ3+U7hC9PFJBgaOf8H6r9UEGtVBZrCuIHVQSmi9EibpfjUzUur5qrvDkxdMojKoIG/Q63hnfOb4aOmM9AyUotF8HlDYAosBsAeDRIvUtMI0bOBJG2juOGdJiGizK8mL+dWCjaRCgl5Rhzp9ihKSgCK/OQreG/xfZVO5k/WmAtyIILtktLJrfmUaH7xMuLk3+hfPnWycPz6hNnrRaaVekkm0k4Z0HAvtnS+Yiiqd9VY5VYA1Zlj/4a2aLDjPOFuBfQ1czpivjpzhRlTGiWQhRUyAqH0C59dcM6f0fsl2fkAsWHV4K5xSjL5o1PkCh9owJWDrJGSQDUs36NbdXpNzL12mmNn+O8sPpNLVUSNfu59SF9P9SL4CvFLyiMRT+ZIz+l/ZKAHKhtaaEu04boYkGq06D3iJij2bCZTNlzqUVH3FhVlfc7bW1bgg+WzDEVgC8SWvufRYr7Jcjc1B5X+R8uslLeCzgu4F8K9Qjs2GRA1aKyJVf/ULv6IzDuHfWhiUsNtUyFzlaF21wjJGkJBEW/Ubq0Hk9XwOKCpx68qz+aHEHVBVY+Iqr/nUkRSIsAFD5ODWm9iXgzCN9CFEvkI4xh2dS5fLK/QVKyigxmkjqwIRTbnLE7Nm4fnoRsD2creuB0BU4c+WF3ts7divuseWnaWC7jbimILzx88DPHSq42Tm546BOierBx6YuWzwH0aIaTDaQ7t3ERq95zh8+TtVR7XepRxRZ0AI/m+mR5ZWm3XqOcty5o83EfOtiA0yi0xku5LWVrmfw7RJHWL11LaBgFFcXjOPfdFPIvT2tw1m5qkUUuxo3IiKodX6K8+yn80mCaMGRkPsZIOCp0t8Q9LuK4vA7dWS6UkIt/x4aaFdMrVvSkxsv2Uwq7V1nEdrERnfsKP7aB9ukC3t8QKPB899+eoSI/q7HA50mprPDnx0Qu0wZrTBcrhnsV+ldXJiBSyHkYbmTR84Gy7FDVWJRnJIzw8yPmlGXgzsZnuz00hBYUleRvRaNW5QlHApwizXSxyt8wsboLmdR26Z4RLgRkTWpRw0teQ1tjQc/fVB3r4hOKWyMLqbjDr47bcUgGZee0l+0Fu8Ph41oClbATORFd9YijKknq5nu0EFOGOHBgRYPdt6qzyOPU85FwcZdoYq7CjjkwnxghGcbWfxaonQNBoZvaA2aeBJj7vFHqTXvJRuqFH4xQD39tnOspBd7JUBqY68Izd9QYVNYI169t5elfCobKKetS2d9j1Vc0Rh24ApZ4FVJ17SXPlFjA6GMMJuQnvQvNUl6xS+KxelbMwvChgnit0jm21Y0ybxfmkpl5lUNkCHukd9WLfcyDYeqM3BaZv+m8x39gqvvqtOWJsqCKyzknWYY4CXK+Wb5DsSZfFnCp+k15uSzXOnwAcy519LfxeRP5VRMvtgX905LIr9cZBC6kU3mEZ45sO0Ym06Ej+cEMbOr1D5qxOi55iBarBsLZ6pprHyBvpoFCm2D2Anced45RNWpHqqgEOgw8WLgRGlUr3a6fl7ELIqrjTjkAbk5jiZ4wBs3O6Vrr4iMqgu1bTGWKo8uBN1ZT/NeIcEOyCwwMuY+XXvBgrsyE/Tme7fIMHLiV7Lx9W+eeFn5SVrChYX6fHJh1syDKsOTehdf+MpOSUCn82PwQUKmDu4B39eoHBIQ5EEtaFQgGrFbqpxEbNWMAnUJpdkiRtt20UyRSYnh1bXG3gxE5rV+EKSRf0FbFMtOa044cbKqV7/72V3rJqC+GzLVh5lm5Kh2U9s0Ex4bUGwVeqVJ9RoFjPwp0q4w8n8Hj3q9t6/bNYHkEsEz1BkufVkflYw3DGVIs/bSPu2VEJqhZxfMyFb2PX9iowMs9zycOkt9UCXlLo7EtG2pnGth/wYEeWxoKChJtjzTmb7+2ETVaF9fmgIvKhrvb8LlDg0KTSlZsxer3+Had5BwvtYvILNYA21ulT9Wa7cdXTWfOU9BDi+3udEjSZSVmP96Vetjtc9CrxKdcUKvP6eBJJ2AJTavCLiDCORsn86x0lvKJ+qSlLKIMi9TJUc14rD2yF3D+DvJ6xsAfWR1XUjGHj9NFEyJ2tQyi4wh885eK/0UlREvfCKNp04W8yfnxwAVRrkZ3p8ZuU/dnN1x6jEVOBt7+hRWeQnAOI9MnY14GWTZ6gyOSZtzUjMVt6N6BF/DKZ9KcZnzphjuhphyRpRKqyV95MgRbiYVgE128VLcjUAFUxuybuovXAx+uYpxd0YDPsA2AXbjmzqM8TnJtopDTCjLa7jSbe7EIXFbyah/MQIrObyuQ6wrkGN6+RorFF3iPQViXzQ9TnholDvPHo03XHymYEE0AmTjw2oxPItqyiOhB6R3YoIIUMSbZYXhjEE0gEVYIyLUvzR1KPAQeIVlSJzcAwS/0FO9Q8IL2o/+xlFDwB5Se0b5hNMInmaGhawJ0kefy+//acGcf41QgKxwdczCP0kqI3JlkhASIfnfG2meESNb5G7U+8aAWZQDEXsUZF2jj62PHjY/4HsIRqG5b2SEtunyVg8Kznamy4mxtTIiMBDB/BZqFx2fivRHFObiaER7TJwJ+/21EuRWBt+GFNo26Ib336SBxkHbJsZeh8gtywxwob/v76+3PsWNY+VvOQQnIz3zXoDrleIkgfRiivqgNnKZSFZW8zrg85KS/W1u4vZI16YOrzMFBlrIkIZxVeMGEjx375sdBA7C6gFpLKiSrZhQSZ2avyfa5mSJnSd/GWYBxou3mDiFGlSQaNpp9AGNqNJ9DjW6QhhxsYoo++V/i5KqvPrkPrpVwz4T2jH1/v1YFXCAplakTHyIbi4f57QL08J6gmA30rT1DGUO72AkUHyEEWIaUmkDaMk2fnDZ8NNIhucGudyvPhhbv1KKAFwl1N6qmG4y/GR5HQOBtRgSPGrHGNDkYQLMlKA9j7J/kKEJnmKox44ItOLd7ujrMv3bf4jJkJGnKbI9y0gk9yhBYHH7e30DBVmbsadLoS/dJ7XzHXnF9wrCSqULvSxuJAgoMuR163YPP9dfiT9+lEWOleYNym88NMCbM9xaBKVlQFI0hVWUCHnfwXtmE25I4tFMM7QogUeq7/ju+ygbrUtc1Ighc4lc2RH6CJQ22aJCwsMUG6hHP0a95sG/jIqPFuj8VL/ceK5P6qOMUKkXZGPvSfGfDIHoe5Dk4IG28PC/nPFrVGQEwEtm5+ammSg72ZsxSQTTRc/4F5jy+SR9SMzQ/mdMqPom/ZU0Kqdhgmubt8N7NhrzCOVQB+ej97Jj+ue+W0GFAo8d/hvvrNvuQr/P6/SecN3+vnQd6yWOera/6vyE5WJBWRXDDYH8vnFdNjABAhpQq8QXhOT6elFMYjP3i5QscJV5Qd0WlGRofcnUlYs7EnVMCBm/g1lkYy4QWbGUfywJxIaB8I8x7gf0S5o9dHhpH7Wr1AsZLV1DWTiH/1N8JNyZ6RJQFAKWFWXFAqyJNu1Ayy90nODYsCRID9faSb7UpJ3GVzMKAgs4No8jjpt0DWeEznunfQGP5GVmdrj1vOEXcP4ilN0QC3kNPPcAx5ZKoUfXK9WFApNMMzAe5dttjznW8fJhcTOhW4vnCR37dBk5W9aB5C8D+e4gX57Fx5rr/SZKVwfeNiBQbQmZS4EyPJTOIoVoGXfb3XxHzUWu8kie1LiK7e67Dy+dG1RhllZPJJOOi6cln8vQ8u9ox1NbvOlygjLpdEFaI3l9vn4qLsSaAYA9g5tT1GzRJpWHPjtISbAkFlKIXPOKi+Tk5IChE6A763fmeze6XK6jRm42xJq2TpDk5VkIUw3gL3HTW2eJO4/UOsOTK4aqEJ1Zae6dKO6BS64xfUMlKthWlnxqNmfUopvrd12ykN9NAPib+/yfmNAygELN0XcCtj+C4ksdL9GAwDkuImXG+Q5QmVPs2JFw/bbVBqh00XzMxwUfp2bDSNcJgYnZy1LzTYtCej1kq9iOnV9ptaQMtT7/CTI1IIOOnKMM88KSaSIisR7jnkS268Tt57ztFk65q6AmNAA2DGsEFpxbgDECJRTROjxw0+iRKN0FMOTAf51dtIPkOiFzFIJ9hcr/kE7EL3vpFYP0QKb0jcy9+tlxAIkytMTzPhDXYe4d43EAI1uzJUUlpuISKcDZ+iZu48uKywAuH1UbuRZc3HjuHHZFhBhysXrwh2ShV7bh3rb74rBzn7z7L7Xs3OWZPLyIvV1ksh5c8IyRWMsTT9Plvz1fLfShKKu6KFcz6oDS8TTLoletpM9F+wgE6hFsPOuRVcTlq6P9teUNWiUtdIeQQ6ylA4bLU6kUk/rE+pxAGYhxvXyoLbcZxmci1bWx8LPZVGiGZ4wPmn/amr48p5gEHNX7f333I7y4mgd8FoHuHhslWeujyN7URx3iXr78mxMrGNyPCD7t9OQAvTikO8Osat6sj/xoVRU1XXKsbbDZKzJsO7bO03q3RorhXCR+6FwhtDa2uJOajVvVkuzwvcz3MD3Zp/z20XEUaRgh0a7nZ1LCRWnp/69HTuF1TMIdvvAlq9wScnox1TF4cqQtrVsX2TeyUOaRSOZWJtm1dU4evdAZKGBkLXrzOz/XrmVXJknhITxqHvhflqE4aW11LjnaJktJysemdT021YM9vfakAM85yE6BSVcotZo4GCP8iIcsjLuJ1yL4AW/a/AuV0a7+ZSvcybJ2tQ7rBzXsMwJXKWxOjC3MeHOebhadcCLOTlD6Xpxniyq9BCi3x136a/p7Oz76N4nj+lABzec6k3opyhnJuZLmJxyBpVyypnZn0piudUwm8p/2DYXv+Mx2WMgmDV53wLkDC4X8/CbVKvhTNPkl/9wNwbX9zV94e00kqIvEnKWrPQzcOrHc1MHoxKa3oQ0qNYMWSGcb4/zCBMwv/0vie5C48HtAccwYbS8U5hDCbciRcyu08yAHqR7iJushRIt9ZWvpnJdfDksnOkVW50G6zkQ=
Aggregate demand curve
Wealth effect of a change in the aggregate price level
Interest rate effect of a change in the aggregate price level
Aggregate supply curve
Nominal wage
Sticky wages
Short-run aggregate supply curve
Long-run aggregate supply curve
Potential output
AD–AS model
Short-run macroeconomic equilibrium
Short-run equilibrium aggregate price level
Short-run equilibrium aggregate output
Demand shock
Supply shock
Stagflation
Long-run macroeconomic equilibrium
Recessionary gap
Inflationary gap
Output gap
Self-correcting
Stabilization policy