Pre-mRNAs in Spliceosomes Are Not Exported from the Nucleus

It is critical that only fully processed mature mRNAs be exported from the nucleus because translation of incompletely processed pre-mRNAs containing introns would produce defective proteins that might interfere with the functioning of the cell. To prevent this, pre-mRNAs associated with snRNPs in spliceosomes are usually prevented from being transported to the cytoplasm.

In one type of experiment demonstrating this restriction, a gene encoding a pre-mRNA with a single intron that is normally spliced out was mutated to introduce deviations from the consensus splice-site sequences. Mutation of either the 5′ or the 3′ invariant splice-site bases at the ends of the intron resulted in pre-mRNAs that were bound by snRNPs to form spliceosomes; however, RNA splicing was blocked, and the pre-mRNA was retained in the nucleus. In contrast, mutation of both the 5′ and 3′ splice sites in the same pre-mRNA resulted in export of the unspliced pre-mRNA, although less efficiently than for the spliced mRNA, probably because of the absence of an exon-junction complex. When both splice sites were mutated, the pre-mRNAs were not efficiently bound by snRNPs, and consequently, their export was not blocked.

Studies in yeast have shown that a protein component of the NPC nuclear basket is required to retain pre-mRNAs associated with snRNPs in the nucleus. If either this protein or the nuclear basket protein to which it binds is deleted, unspliced pre-mRNAs are exported. Consequently, these proteins prevent hnRNPs associated with snRNPs from traversing the NPC.

444

Many cases of thalassemia, an inherited disease that results in abnormally low levels of globin proteins, are due to mutations in globin-gene splice sites that decrease the efficiency of splicing but do not prevent association of the pre-mRNA with snRNPs. The resulting unspliced globin pre-mRNAs are retained in the nuclei of erythroid progenitors (see Figure 16-7) and are rapidly degraded.