Chapter 8. Satellite DNA

Introduction

Analyze the Data
true
false

Analyze the Data 8-1: Satellite DNA

Satellite DNA is a known component of many genomes and can be found in both coding and noncoding DNA. When it is found in coding DNA, changes in the number of repeats can result in altered proteins. But the effect of these repeats in noncoding DNA is not as well understood. To determine whether repeats in the promoter region can alter gene expression and chromatin compaction, M. D. Vinces and colleagues (Vinces et al., 2009, Science 324:1213–1216) searched the Saccharomyces cerevisiae genome for the presence of repetitive DNA in promoters and examined how altering the number of repeats affected gene expression and DNA packaging.

Question

vUjERNuZ1xLRGiY/7AnXGKETYrisFobsVdt2Yy40LcPmvCaN8fxFhbEfJEbnYqKdvUmt9oKC/qqGtcszlQSZyH/xUhk1ScVA4eQi9hNDky3ZGxsDS+PswihKUOcNNxPZYoWHD03Oa6VXXuOGk5n70nMNxG2I3M+k9Jk0iU6AhQoKifs1VKMuhPoqUf+8JqIR11pvolefpWCKTLUMedspKjp/bZG3N6bm+lEzb4ECjQ/97I3X1gD5WnUk1kDQ+c4GsN6W6Dd1E9b4IveJEC1gBHgKv4mcv7d2cnQbFPTzL/c/gMqBRzWDGUqkFcElanNJL//7yA8yQlT2WKVyiHLGSgF7xWGuXyiKZaT+UulLyOHkHVzFYwTY2AMLOAFKQW7pxOxX6kN8KwuwtKv/jzPAQZmHIft+SZuLenY9+e07IUZkhbW8EeiIaxoaUbz1pUW6adFUnnoSnzjtf6LCtxLsuJEifwlyr5FUKzixwHSEwptnECSuGicss7lZjg30Q5ShZQs4TMBu9XseLhawyASujg5x9vap5uxdanLbnk//rdkMvUYvMdlyjZPlfnGbp4oLd61un3kEG3LBYNj2KTC6xxndWjXJwEnky8J9PQ==
_feedback: Slippage between the daughter and template strand during replication can result in an increase in repeats.

Question

wQorAX/tXGQcEDrLdHqE7/UZJ6ukj6UMu+0Fhw9KQ61dHo8rc4G+T2jRPt98IB3CuA+NQXQgd1RU+m4JK6s1N7CDWN/MI2TYp9hEk3Of+jCZIycTuWD/fV7slegKvraTWHSPUBfVPfHV1Uo7aPjhIASNbie0EJleWAcXmr9hyA9J/PsZMdjYbYagMbMZaSbyyWVNL0/GHOS77jtpbJpm5ZuGcNqOvNGGaSLyHetkJfx7NiV6P88PXG9JGY5PyE2in506egyren5OqpBdnenm9RdIv4hZdfhIJIQKhsCtg+686O13RnwGjGgAHh+6BvdHXQAUN3flupAysUMP0Y46Zf7zuvG6zc5inCRx4uOoLmlHqRAMYWFsQ5buVorzytoe1ZMxq9TlLP5/6FgGw1LzEyaQhSu1X5K63++V6CrdT/PjP/PneFkogjyFCoxgeU3lWKm7Wk2Rgi9y4uNOOtnEue1XI+EK0t02V8e/ebcQaAXESTDh4kcvXMJa6SXC1jmdVe7WAUfRoVPOn1ZoWZXo+05kaLEtmWeVur/ZJfe1tSW/TuIUFzMTv2MIDGn8yCjUHMCdJXeHF13i+heGOILqOdJx5ysz5WlVHwfccE2XW7kCkq7H/huq88g7IXZh1CLvrXpkUgqj0/svFgcNnCLJQZ8iqdA+Vf+QIv48JGnHwWnw4YlQI4xU5DayHfJbWWyUCIoTQwbhF3fPWYNYBlDzxE9mDUhNqLoZpj7g95V5dak3cB+3MLQ5xyu59lpSJXVwy5hvKcNAlVIsAln0J6L+ADX99AFshOKFefY+9mIrpSQ9to37gpouGAY+C8z6lnXRRp4S3lddwH8ZtkerRlrWOTG1NKZOQ8wVaUTOydqO5TmyKY0ZMFTHci9gKSvoy7dZ9pJgKCbGVY11EqZoIFpCMYEemFSUmN6at/4JPJcZgpJOa2B8tCgUpJ0yU6sYR9KTNaCnBkdXWuGLep5E9Fppx29WlPguS+9IwRoMlDhAf4Z6SqMYED4DncWlUQXUL2E5Rbeaof2Z/TJCADj5Kk8cMNTFxb0=
_feedback: An SDT1 promoter with 13 repeats results in the highest gene expression. Less than this results in lower expression as does more than 13 repeats. Q RT-PCR involves the extraction of mRNA from strains that contain varying promoters. The mRNA is then converted into cDNA, which is used as a template for a PCR reaction using SDT1 specific primers. If there is more gene expression, there will be more mRNA, which results in faster production of DNA in the Q PCR reaction.

Question

DxYFeOmXfkqJI/Tp4N+SMgNVQhwUQO/Am9q+SRU1CvtPjYcNeIIaSff73y8eY8UaKGqyVlgteorDxYfxR4y5gV7EdAu/AJTWkxP1HF1RKYz/++6BUQJ6w5PEUErz9l8lD2aIXU3y703hP6nNzv34pQyZbbqOnhEfknYv7cgUcYGkamVYej/n5t6vqtSAWybVEDfag6L5/BXc69MbHYAZf5oKVPhH9Idor/F59VxuSF5ByB0k3h+9nh0UaFJBKsFCUHL79GZMW4RGjjQfpzsDfn0c95ryIBbEt+lMo2iDDqv589CUpPhP5TNrD959tQ3ZzJnmWUoHWLfE5XAekPddRz+rUXnkANw2LHPW/h0PTZaFCq3Y5OYsTYJ5OfoquvyHh+cNjAz8AtrWXXULMgJucBA8Pn/IvJNtq+P7+Wzig2faY18fTVwYZbbybMz73dwR1Dyu8f5nTg0SgDiQTKeJ4a98urAYZjEbjTjRWX6/wZItEMjZ/tb/jZbrUzRo5XMGFvEnVR+l0wDMMPhSpYhVX+k0gSub0aQx97GcLd+HiXqEgy4rhe6sDiyBs/Dr0DZFqnxc0mRncj5gRTlKeTiDeAOGBNR7A9aEDU3krD0KWVvuQEysJy+Q+BW00TmWornusWj3nGOtAMFmWjzUeovsVH87j3JjAGUl0FT1sXRZw4JxbHJkKBEDM91UbSa5QBsWFK9+02DWNt/Py2rJB3NvsTOUDOFLhh0hbiQs0tRzFPVxUo0spPB4pKnWFG2uJNvgmTBkMGhXR/GPX0B+R31yixxcnFv+kdNzVJLW6/lTjeEciExGzlz9Od41EtOkq5LnNdWYppcdAdT4VucrSqLdL1oN1zIASWQHs5Oxazo9aYogD2Srao57WH8LlL2dCz6ZOtpRLUhTtno8NcRgK2wZdVJVdgStyaONQorEyyxhEAIB1LrYd37ouzJduRNbYEPA5Hv1feBQM2xbYydj9WrvEMLjmu1fRPJzJYbNmT099unS06jq/hhBX+ShMGdH4cZXOPbjTfVNchKYeV5e5zUEGQNq+GdDDQfZJSrRd0leMNlB/NgdDSXGf9ccmihq4seihpYydRd5pt1Gs+hrJMPegJt4evMPrncknqxOFTjFndAbPbqoOVRBUp0gq5fWYk2YULiyQCEGyw2+J9MWFAQbhRne9yXTRrO2Ydvdwo63eFSn49L/dmuAO0Upt59qtpyX0qVSBKptYHa1Ut4Fe3NHpqakxVbiM9te+0pZ3vZxsSVbzsdyGNZNQNinlMbvjZFqoHi5JKul8reA3MWRcVceLPH9QdjuB3bM5pv6VM2zNkWLS1cI
_feedback: This experiment assumes that under selective pressure, it is possible to obtain yeast that are capable of altering the number of repeats in the promoter. This is because repeat number affects gene expression. In the absence of uracil, those cells that are capable of increasing uracil production will have a growth advantage, which is evident from this experiment. It is most likely that somewhere in the neighborhood of 13 repeats would allow the most uracil synthesis.

Question

4imXr/HvG//wSGqeJH0qSLj9c8KkDjlhV5q3SITUM+V1vE63XwujnbQoosWw5Mq/c/c9nYfm48FGcrvs/V6BrrXq90db6NODz6DDowG3lr6F8Hl/ASBvEtL7r8B3mvHuFchjV7o3AWHroJKcXq0Q+ZNpzInMKIT39n2rwJ5Sn4jwLK++Emt96OLakWpePimLGSNFN0RWWZs1ppA0idBFGkrp/Wqtli5Y9iF06M09z8NoAwsWPk13G8Jw50AwYxoKmXPwgbklIoeAKVDbQfSWEILTrYm+MqNPNwAuhVgQkO1lUJrWQCktdbL+V6qdof2paaxyHqb+o6hnzz/PAd0bxWuxf4mdJPzzuHcleVuo9Ux1dwt5yUjh9Ju8X68LnZCPDlgCXhsdRnIJMnfONmyaxycogiIy7cpse2ivQXY+9K1ddfVC71VNxLXHmAzWpLDse7yfLyHG6ehzlpDlHwsU9EsVPuNcMvsNAcTsoffKk2+AwChe4tb3zYRMiWUWfZB1+Qvvr/bPmrDWmv7sKohKp4eRGkLFvZpH97AiRPj9fu/TMldGqnBVbjzKVfK1sJtNGEGZPIN6EKLA7+ZOodDJHd5LJncqzMkp5eN9kkX1MwpQLlODXFNIFg==
_feedback: One would conclude that histones do not associate with repetitive DNA in the promoter region. By decreasing the repeats, you would be more likely to see histones associated with those areas of the promoter.

Activity results are being submitted...