Chapter 2. Pre/Post Test Questions: Derivatives Part 1

Pre-Test Question

Math and Graphing Review
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

Ehhmzkz6Q0IUH7NDqvdcWyEX8e0hK7XTwQ6pluy6pzOWCUoqvSOJOzhXEi7u5DKzYIu9s2bInI3ZyftQtY7ogndP6vExGhgaKXv5Q+LulEnByor/dczkOeFgB1A5uyckN1NZ06AyE9O3YhAf2/IhNgRpgx9At6tV3qGwL2RP9WE0emCUt+xZxzWIwpqU0luVfUwHWangI5Z4QccindzTBOpmQvhp8bKPqmX0N7unrFKdv8wMQBF2K6BwPoR/IbjsQ703XC4m1fiV15v3dUNb+FttDdyiFvR1IirqIXb5zZWoUm+dv5Ccs7azg6fm1Dy0
Correct! The derivative shows how a change in one variable affects another variable.
Sorry, the derivative shows how a change in one variable affects another variable.

Post-Test Question

Question 2.1

65LpMwb/ScmjcD5UDIA09j+i00UzczfKwhGO+9zllvHnUY3s4ud+A8Sxb2n5AxLG814MwVlXl2bgCmrK1jPPNf6+qPUudjqilviNyA33I9Y72EiLZPf3bYyikgLLFGHqC9eXX4CQqk3gxoec
Correct! The slope of a line or a function is always equal to its derivative.
Sorry, the slope of a line or a function is always equal to its derivative.

Question 2.2

wDXjy7cuhEq/k0qAdug2NIj6u90/H6rwYGoy6E8E+YhSU63PdFz1f0kZGSGX2yCAwjT6fbvu6xVxwRJJfnj6BCXcbVUsTQBqqaE6GYp8UhzY04k0aiVKwMjoKw6NWwmumfb6kzphf85tI8MBBR2xQcBxbgDjkZfNFZXrSb9olrlSCCMaRfc5duvkPzJQ0PLLwbsHPzdJqwl0VhqcH0TxQGZEHmXpFnvyhH3d2wPikadOhn8daEj0eRIbrXV7YPU0BEK8bubOo7Ijrb8a2S4dqoxNA0KcP9UYjhaeSJD/SjnjEmcDDGRxlujpvE4StUiJ+VrDxteNwMP+T+5gW2VBgpugsTcy8p+L/2/pA6jbO15iSFgM9WO0SVCI9XnLgCT6V0uJ3auIjHPe4sWBsdFTJf3REXtSA5bdRjNXcfPJGxvEKlN2
Correct! df(x)dx is a correct notation for the derivative of function f(x). f'(x) is another correct notation.
Sorry, df(x)dx is a correct notation for the derivative of function f(x). f'(x) is another correct notation.

Question 2.3

5fqdTYUtnIV5Ed5EtwbAN5KOBwx6OHcfvx7AUYt0L+XNbV3tduPAQAPyGWzsBtLzhJR2IAob1tEqQsA3eyu5mEpxcxq8UApYARPNGh++xQpOFAezQJmJre7PJbb4NaVW
Correct! The slope of a non-linear line will change depending on where it is measured.
Sorry, the slope of a non-linear line will change depending on where it is measured.

Question 2.4

KNsBBEO9WdmY4utd7JrhiFExhmw8HbFvQyGSru5HPEtIdwudW0i2bhEzQRmNsR0ySZLT6JzIvniPXXjsvU33UZ2lTUD54TpWfuj5EflG6zR2m00HkLfgMlLQuzIFdV+Q
Correct! The derivative of some functions (linear) are constant but not all functions.
Sorry, The derivative of some functions (linear) are constant but not all functions.

Question 2.5

1bqeluGpK0E+FNNVua8D6xOgWH4/HjeBp5MSrbGBOfubvqyvNfWUJqzEXwJf03/hGydgxGJpEW/NHTY30h9XX4614DjO2gAFlI4FqYyCtyDdt7NEVpkE5BI0Cxps3VBIUGrEuEXWPB3N3rOIWRYvWnOSaHvNG295BemOs3lKXIkbfI/wc3XqfFu2rd0MXZmfWfEcM8OVrqfNTuRdyCRH0GyL0Kp77HXB4Uwxh+0CteMkNmKip5EImF9a1xyvQm03NvIw5M6A4TvLDOhRL9kIZEy42kQ/PEht4mG6idUvU2RLaPtb7/laHyVM93M3/hso2GIVAtxw1PtfzeLb7eyUcEMMzVB529M/I5sCmJHeDDZQq12VHZU1Pu7ksTlUdOL0q9kLyA==
Correct! The derivative allows us to understand relationships, and especially non-linear relationships between variables.
Sorry, The derivative allows us to understand relationships, and especially non-linear relationships between variables. If two variables have a linear relationship, then the derivative is no more accurate than the slope.