Chapter 2. Pre/Post Test Questions: Derivatives Part 1

Pre-Test Question

Math and Graphing Review
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

Ww7wVmE9jI/VUt2ok3ke/ryM/U8CyYF9MP4+hQlIO6v+FjBs0B6BIuq7EA+3lrn4X1KT3l04LCdbAuJ8e8V85W9kIe77iV1JhZDcUbBjfP5K5OWunTKHtZGKlffAVd66JG8a0H6W38ZFiLh/cNFtcSkj6+2tHqdfLAt6cPBugPhBdWYPBQzGkx76deD8HRAVDpezfpNVsMLBZv9QcHTg4bxO8Z6XDReQgS7s2p4EHni/g789iU8/SKQ0vjmlLEzGMCjEtZrpZg+a7ZbScl+iJGiAYB8+7zZjf39t9ujaTPN7owcKKI4AKSYGYjBVuiBY
Correct! The derivative shows how a change in one variable affects another variable.
Sorry, the derivative shows how a change in one variable affects another variable.

Video

Post-Test Questions

Question 2.1

65LpMwb/ScmjcD5UDIA09j+i00UzczfKwhGO+9zllvHnUY3s4ud+A8Sxb2n5AxLG814MwVlXl2bgCmrK1jPPNf6+qPUudjqilviNyA33I9Y72EiLZPf3bYyikgLLFGHqC9eXX4CQqk3gxoec
Correct! The slope of a line or a function is always equal to its derivative.
Sorry, the slope of a line or a function is always equal to its derivative.

Question 2.2

wDXjy7cuhEq/k0qAdug2NIj6u90/H6rwYGoy6E8E+YhSU63PdFz1f0kZGSGX2yCAwjT6fbvu6xVxwRJJfnj6BCXcbVUsTQBqqaE6GYp8UhzY04k0aiVKwMjoKw6NWwmumfb6kzphf85tI8MBBR2xQcBxbgDjkZfNFZXrSb9olrlSCCMaRfc5duvkPzJQ0PLLwbsHPzdJqwl0VhqcH0TxQGZEHmXpFnvyhH3d2wPikadOhn8daEj0eRIbrXV7YPU0BEK8bubOo7Ijrb8a2S4dqoxNA0KcP9UYjhaeSJD/SjnjEmcDDGRxlujpvE4StUiJ+VrDxteNwMP+T+5gW2VBgpugsTcy8p+L/2/pA6jbO15iSFgM9WO0SVCI9XnLgCT6V0uJ3auIjHPe4sWBsdFTJf3REXtSA5bdRjNXcfPJGxvEKlN2
Correct! df(x)dx is a correct notation for the derivative of function f(x). f'(x) is another correct notation.
Sorry, df(x)dx is a correct notation for the derivative of function f(x). f'(x) is another correct notation.

Question 2.3

5fqdTYUtnIV5Ed5EtwbAN5KOBwx6OHcfvx7AUYt0L+XNbV3tduPAQAPyGWzsBtLzhJR2IAob1tEqQsA3eyu5mEpxcxq8UApYARPNGh++xQpOFAezQJmJre7PJbb4NaVW
Correct! The slope of a non-linear line will change depending on where it is measured.
Sorry, the slope of a non-linear line will change depending on where it is measured.

Question 2.4

KNsBBEO9WdmY4utd7JrhiFExhmw8HbFvQyGSru5HPEtIdwudW0i2bhEzQRmNsR0ySZLT6JzIvniPXXjsvU33UZ2lTUD54TpWfuj5EflG6zR2m00HkLfgMlLQuzIFdV+Q
Correct! The derivative of some functions (linear) are constant but not all functions.
Sorry, The derivative of some functions (linear) are constant but not all functions.

Question 2.5

xg+FzHf1lhnvY8AWc5MtYwq6pMQZpdgf6lLJwUV4bdgV16BJAJGsO3nzThXa2lIAr6rOXdWSVqcZpTt0nA/X724XzudTifWv1vwaDCKeYiC4yiYJUb4G9GuK69RlCwPGTJVoHCuMsaqbPYLCyFRytiamULc3IpWG33SFzqu3DFxYOFbrIPgValbaEspp2USRMDUHL3tsDYbYW+N7VX7GLTkhxJ1BFRFQmvnJsysDGt+KBhyk4ojweg8QnCWNdBhzcLmDqFRO1HwBQDF+h/GEkL9A+nbuUAnXW7jWYjaFCRODQnjw6xzl7QJy4qHa6azx+MhDX9UWf8sFXzAOnvgzy+L0oa+8qcbruPEvDd34VJmuv++ZqJdC11BGRBNB0ro4WuftTw==
Correct! The derivative allows us to understand relationships, and especially non-linear relationships between variables.
Sorry, The derivative allows us to understand relationships, and especially non-linear relationships between variables. If two variables have a linear relationship, then the derivative is no more accurate than the slope.