20.1 Hearing
The sounds of music A violin’s short, fast waves create a high pitch. The longer, slower waves of a cello or bass create a lower pitch. Differences in the waves’ height, or amplitude, also create differing degrees of loudness.
LIKE OUR OTHER SENSES, OUR audition, or hearing, helps us adapt and survive. For those of us who communicate invisibly—by shooting unseen air waves across space and receiving back the same—hearing provides information and enables relationships. Hearing loss is therefore an invisible disability. To not catch someone’s name, to not grasp what someone is asking, and to miss the hilarious joke is to be deprived of what others know, and sometimes to feel excluded. (As a person with hearing loss, I [DM] know the feeling.)
Most of us, however, can hear a wide range of sounds, and the ones we hear best are those in the range of the human voice. With normal hearing, we are remarkably sensitive to faint sounds, such as a child’s whimper. (If our ears were much more sensitive, we would hear a constant hiss from the movement of air molecules.) Our distant ancestors’ survival depended on this keen hearing when hunting or being hunted.
We are also remarkably attuned to sound variations. Among thousands of possible human voices, we easily recognize a friend on the phone, from the moment she says “Hi.” Moreover, hearing is fast. “It might take you a full second to notice something out of the corner of your eye, turn your head toward it, recognize it, and respond to it,” notes auditory neuro-scientist Seth Horowitz (2012). “The same reaction to a new or sudden sound happens at least 10 times as fast.” A fraction of a second after such events stimulate the ear’s receptors, millions of neurons have simultaneously coordinated in extracting the essential features, comparing them with past experience, and identifying the stimulus (Freeman, 1991). For hearing as for our other senses, we wonder: How do we do it?
The Stimulus Input: Sound Waves
20-1 What are the characteristics of air pressure waves that we hear as sound?
Draw a bow across a violin, and you will unleash the energy of sound waves. Jostling molecules of air, each bumping into the next, create waves of compressed and expanded air, like the ripples on a pond circling out from a tossed stone. As we swim in our ocean of moving air molecules, our ears detect these brief air pressure changes.
Like light waves, sound waves vary in shape (FIGURE 20.1). The amplitude of sound waves determines their loudness. Their length, or frequency, determines the pitch we experience. Long waves have low frequency—and low pitch. Short waves have high frequency—and high pitch. Sound waves produced by a violin are much shorter and faster than those produced by a cello or a bass guitar.
Figure 20.1
The physical properties of waves (a) Waves vary in wavelength (the distance between successive peaks). Frequency, the number of complete wavelengths that can pass a point in a given time, depends on the wavelength. The shorter the wavelength, the higher the frequency. Wave length determines the pitch of sound. (b) Waves also vary in amplitude (the height from peak to trough). Wave amplitude influences sound intensity.
We measure sounds in decibels, with zero decibels representing the absolute threshold for hearing. Every 10 decibels correspond to a tenfold increase in sound intensity. Thus, normal conversation (60 decibels) is 10,000 times more intense than a 20-decibel whisper. And a temporarily tolerable 100-decibel passing subway train is 10 billion times more intense than the faintest detectable sound.
The Ear
20-2 How does the ear transform sound energy into neural messages?
The intricate process that transforms vibrating air into nerve impulses, which our brain decodes as sounds, begins when sound waves enter the outer ear. An intricate mechanical chain reaction begins as the visible outer ear channels the waves through the auditory canal to the eardrum, a tight membrane, causing it to vibrate (FIGURE 20.2). In the middle ear, a piston made of three tiny bones (the hammer, anvil, and stirrup) picks up the vibrations and transmits them to the cochlea, a snail-shaped tube in the inner ear. The incoming vibrations cause the cochlea’s membrane (the oval window) to vibrate, jostling the fluid that fills the tube. This motion causes ripples in the basilar membrane, bending the hair cells lining its surface, not unlike the wind bending a wheat field. Hair cell movement triggers impulses in the adjacent nerve cells. Axons of those cells converge to form the auditory nerve, which sends neural messages (via the thalamus) to the auditory cortex in the brain’s temporal lobe. From vibrating air to moving piston to fluid waves to electrical impulses to the brain: Voila! We hear.
Figure 20.2
Hear here: How we transform sound waves into nerve impulses that our brain interprets (a) The outer ear funnels sound waves to the eardrum. The bones of the middle ear (hammer, anvil, and stirrup) amplify and relay the eardrum’s vibrations through the oval window into the fluid-filled cochlea. (b) As shown in this detail of the middle and inner ear, the resulting pressure changes in the cochlear fluid cause the basilar membrane to ripple, bending the hair cells on its surface. Hair cell movements trigger impulses at the base of the nerve cells, whose fibers converge to form the auditory nerve. That nerve sends neural messages to the thalamus and on to the auditory cortex.
That Baylen may hear When Super Bowl-winning quarterback Drew Brees celebrated New Orleans’ 2010 victory amid pandemonium, he used ear muffs to protect the vulnerable hair cells of his son, Baylen.
Perhaps the most intriguing part of the hearing process is the hair cells—”quivering bundles that let us hear” thanks to their “extreme sensitivity and extreme speed” (Goldberg, 2007). A cochlea has 16,000 of them, which sounds like a lot until we compare that with an eye’s 130 million or so photoreceptors. But consider their responsiveness. Deflect the tiny bundles of cilia on the tip of a hair cell by the width of an atom—the equivalent of displacing the top of the Eiffel Tower by half an inch—and the alert hair cell, thanks to a special protein at its tip, triggers a neural response (Corey et al., 2004).
Across the world, 360 million people are challenged by hearing loss (WHO, 2012). Damage to the cochlea’s hair cell receptors or their associated nerves can cause sensorineural hearing loss (or nerve deafness). Occasionally, disease damages these receptors, but more often the culprits are biological changes linked with heredity, aging, and prolonged exposure to ear-splitting noise or music. Sensorineural hearing loss is more common than conduction hearing loss, which is caused by damage to the mechanical system that conducts sound waves to the cochlea.
The cochlea’s hair cells have been likened to carpet fibers. Walk around on them and they will spring back with a quick vacuuming. But leave a heavy piece of furniture on them for a long time and they may never rebound. As a general rule, if we cannot talk over a noise, it is potentially harmful, especially if prolonged and repeated (Roesser, 1998). Such experiences are common when sound exceeds 100 decibels, as happens in venues from frenzied sports arenas to personal music systems playing near maximum volume (FIGURE 20.3). Ringing in the ears after exposure to loud sounds indicates that we have been bad to our unhappy hair cells. One study of teen rock concert attendees found that after three hours of sound averaging 99 decibels, 54 percent reported not hearing as well, and 1 in 4 had ringing in their ears. As pain alerts us to possible bodily harm, ringing of the ears alerts us to possible hearing damage. It is hearing’s equivalent of bleeding.
Figure 20.3
The intensity of some common sounds
Hardware for hearing Cochlear implants work by translating sounds into electrical signals that are transmitted to the cochlea and, via the auditory nerve, on to the brain.
The rate of teen hearing loss, now 1 in 5, has risen by a third since the early 1990s (Shargorodsky et al., 2010). Teen boys more than teen girls or adults blast themselves with loud volumes for long periods (Zogby, 2006). Males’ greater noise exposure may help explain why men’s hearing tends to be less acute than women’s. But male or female, those who spend many hours in a loud nightclub, behind a power mower, or above a jackhammer should wear earplugs. “Condoms or, safer yet, abstinence,” say sex educators. “Earplugs or walk away,” say hearing educators.
For now, the only way to restore hearing for people with nerve deafness is a sort of bionic ear—a cochlear implant, which, by 2011, had been given to 219,000 people worldwide (NIDCD, 2013). This electronic device translates sounds into electrical signals that, wired into the cochlea’s nerves, convey information about sound to the brain. Cochlear implants given to deaf kittens and human infants have seemed to trigger an “awakening” of the pertinent brain area (Klinke et al., 1999; Sireteanu, 1999). These devices can help children become proficient in oral communication (especially if they receive them as preschoolers or even before age 1) (Dettman et al., 2007; Schorr et al., 2005). Cochlear implants can help restore hearing for most adults, but only if their brain learned to process sound during childhood.
RETRIEVAL PRACTICE
- What are the basic steps in transforming sound waves into perceived sound?
The outer ear collects sound waves, which are translated into mechanical waves by the middle ear and turned into fluid waves in the inner ear. The auditory nerve then translates the energy into electrical waves and sends them to the brain, which perceives and interprets the sound.
- The amplitude of a sound wave determines our perception of__________(loudness/pitch).
loudness
- The longer the sound waves are, the ______________ (lower/higher) their frequency is and the ______________ (higher/lower) their pitch.
lower; lower
Perceiving Loudness, Pitch, and Location
20-3 How do we detect loudness, discriminate pitch, and locate sounds?
Responding to Loud and Soft SoundsHow do we detect loudness? If you guessed that it’s related to the intensity of a hair cell’s response, you’d be wrong. Rather, a soft, pure tone activates only the few hair cells attuned to its frequency. Given louder sounds, neighboring hair cells also respond. Thus, your brain interprets loudness from the number of activated hair cells.
Experiments are also under way to restore vision—with a bionic retina (a 2-millimeter-diameter microchip with photoreceptors that simulate the damaged retinal cells), and with a video camera and computer that simulate the visual cortex. In test trials, both devices have enabled blind people to gain partial sight (Boahen, 2005; Steenhuysen, 2002).
If a hair cell loses sensitivity to soft sounds, it may still respond to loud sounds. This helps explain another surprise: Really loud sounds may seem loud to people with or without normal hearing. As a person with hearing loss, I [DM] used to wonder what really loud music must sound like to people with normal hearing. Now I realize it sounds much the same; where we differ is in our perception of soft sounds. This is why we hard-of-hearing people do not want all sounds (loud and soft) amplified. We like sound compressed, which means harder-to-hear sounds are amplified more than loud sounds (a feature of today’s digital hearing aids).
Hearing Different PitchesHow do we know whether a sound is the high-frequency, high-pitched chirp of a bird or the low-frequency, low-pitched roar of a truck? Current thinking on how we discriminate pitch combines two theories.
For an interactive review of how we perceive sound, visit Launch Pad’s PsychSim 6: The Auditory System. For an animated explanation, visit LaunchPad’s Concept Practice: The Auditory Pathway.
- Hermann von Helmholtz’s place theory presumes that we hear different pitches because different sound waves trigger activity at different places along the cochlea’s basilar membrane. Thus, the brain determines a sound’s pitch by recognizing the specific place (on the membrane) that is generating the neural signal. When Nobel laureate-to-be Georg von Békésy (1957) cut holes in the cochleas of guinea pigs and human cadavers and looked inside with a microscope, he discovered that the cochlea vibrated, rather like a shaken bedsheet, in response to sound. High frequencies produced large vibrations near the beginning of the cochlea’s membrane. Low frequencies vibrated more of the membrane. But a problem remains: Place theory can explain how we hear high-pitched sounds but not low-pitched sounds. The neural signals generated by low-pitched sounds are not so neatly localized on the basilar membrane.
- Frequency theory (also called temporal theory) suggests an alternative: The brain reads pitch by monitoring the frequency of neural impulses traveling up the auditory nerve. The whole basilar membrane vibrates with the incoming sound wave, triggering neural impulses to the brain at the same rate as the sound wave. If the sound wave has a frequency of 100 waves per second, then 100 pulses per second travel up the auditory nerve. But again, a problem remains: An individual neuron cannot fire faster than 1000 times per second. How, then, can we sense sounds with frequencies above 1000 waves per second (roughly the upper third of a piano keyboard)?
- Enter the volley principle: Like soldiers who alternate firing so that some can shoot while others reload, neural cells can alternate firing. By firing in rapid succession, they can achieve a combined frequency above 1000 waves per second. Thus,
- Place theory best explains how we sense high pitches.
- Frequency theory best explains how we sense low pitches.
- Some combination of place and frequency theories seems to handle the pitches in the intermediate range.
RETRIEVAL PRACTICE
- Which theory of pitch perception would best explain a symphony audience’s enjoyment of a high-pitched piccolo? How about a low-pitched cello?
place theory; frequency theory
Locating SoundsWhy don’t we have one big ear—perhaps above our one nose? “The better to hear you,” as the wolf said to Red Riding Hood. Thanks to the placement of our two ears, we enjoy stereophonic (“three-dimensional”) hearing. Two ears are better than one for at least two reasons (FIGURE 20.4). If a car to your right honks, your right ear will receive a more intense sound, and it will receive the sound slightly sooner than your left ear.
Figure 20.4
How we locate sounds Sound waves strike one ear sooner and more intensely than the other. From this information, our nimble brain can compute the sound’s location. As you might therefore expect, people who lose all hearing in one ear often have difficulty locating sounds.
Because sound travels 750 miles per hour and human ears are but 6 inches apart, the intensity difference and the time lag are extremely small. A just noticeable difference in the direction of two sound sources corresponds to a time difference of just 0.000027 second! Lucky for us, our supersensitive auditory system can detect such minute differences (Brown & Deffenbacher, 1979; Middlebrooks & Green, 1991).