7.2 Our Divided Brain

7-3 What do split brains reveal about the functions of our two brain hemispheres?

Our brain’s look-alike left and right hemispheres serve differing functions. This lateralization is apparent after brain damage. Research spanning more than a century has shown that left hemisphere accidents, strokes, and tumors can impair reading, writing, speaking, arithmetic reasoning, and understanding. Similar right hemisphere damage has effects that are less visibly dramatic. Does this mean that the right hemisphere is just along for the ride? Many believed this was the case until the 1960s, when a fascinating chapter in psychology’s history began to unfold: Researchers found that the “minor” right hemisphere was not so limited after all.

Splitting the Brain

In 1961, Los Angeles neurosurgeons Philip Vogel and Joseph Bogen speculated that major epileptic seizures were caused by an amplification of abnormal brain activity bouncing back and forth between the two cerebral hemispheres, which work together as a whole system. If so, they wondered, could they put an end to this biological tennis match by severing the corpus callosum, the wide band of axon fibers connecting the two hemispheres and carrying messages between them (see FIGURE 7.10)? Vogel and Bogen knew that psychologists Roger Sperry, Ronald Myers, and Michael Gazzaniga had divided cats’ and monkeys’ brains in this manner, with no serious ill effects.

Figure 7.10
The corpus callosum This large band of neural fibers connects the two brain hemispheres. To photograph the half brain at left, a surgeon separated the hemispheres by cutting through the corpus callosum and lower brain regions. The high-resolution diffusion spectrum image on the right, showing a top view, reveals brain neural networks within the two hemispheres, and the corpus callosum neural bridge between them.
Page 83

So the surgeons operated. The result? The seizures all but disappeared. The patients with these split brains were surprisingly normal, their personality and intellect hardly affected. Waking from surgery, one even joked that he had a “splitting headache” (Gazzaniga, 1967). By sharing their experiences, these patients have greatly expanded our understanding of interactions between the intact brain’s two hemispheres.

To appreciate these findings, we need to focus for a minute on the peculiar nature of our visual wiring, illustrated in FIGURE 7.11. Note that each eye receives sensory information from the entire visual field. But in each eye, information from the left half of your field of vision goes to your right hemisphere, and information from the right half of your visual field goes to your left hemisphere, which usually controls speech. Data received by either hemisphere are quickly transmitted to the other across the corpus callosum. In a person with a severed corpus callosum, this information-sharing does not take place.

Figure 7.11
The information highway from eye to brain

Knowing these facts, Sperry and Gazzaniga could send information to a patient’s left or right hemisphere. As the person stared at a spot, they flashed a stimulus to its right or left. They could do this with you, too, but in your intact brain, the hemisphere receiving the information would instantly pass the news to the other side. Because the split-brain surgery had cut the communication lines between the hemispheres, the researchers could, with these patients, quiz each hemisphere separately.

In an early experiment, Gazzaniga (1967) asked these people to stare at a dot as he flashed HE·ART on a screen (FIGURE 7.12). Thus, HE appeared in their left visual field (which transmits to the right hemisphere) and ART in the right field (which transmits to the left hemisphere). When he then asked them to say what they had seen, the patients reported that they had seen ART. But when asked to point to the word they had seen, they were startled when their left hand (controlled by the right hemisphere) pointed to HE. Given an opportunity to express itself, each hemisphere indicated what it had seen. The right hemisphere (controlling the left hand) intuitively knew what it could not verbally report.

Figure 7.12
One skull, two minds When an experimenter flashes the word HEART across the visual field, a woman with a split brain verbally reports seeing the portion of the word transmitted to her left hemisphere. However, if asked to indicate with her left hand what she saw, she points to the portion of the word transmitted to her right hemisphere. (From Gazzaniga, 1983.)
Page 84

When a picture of a spoon was flashed to their right hemisphere, the patients could not say what they had viewed. But when asked to identify what they had viewed by feeling an assortment of hidden objects with their left hand, they readily selected the spoon. If the experimenter said, “Correct!” the patient might reply, “What? Correct? How could I possibly pick out the correct object when I don’t know what I saw?” It is, of course, the left hemisphere doing the talking here, bewildered by what the nonverbal right hemisphere knows.

“Do not let your left hand know what your right hand is doing.”

Matthew 6:3

A few people who have had split-brain surgery have been for a time bothered by the unruly independence of their left hand, which might unbutton a shirt while the right hand buttoned it, or put grocery store items back on the shelf after the right hand put them in the cart. It was as if each hemisphere was thinking “I’ve half a mind to wear my green (blue) shirt today.” Indeed, said Sperry (1964), split-brain surgery leaves people “with two separate minds.” With a split brain, both hemispheres can comprehend and follow an instruction to copy—simultaneously—different figures with the left and right hands (Franz et al., 2000; see also FIGURE 7.13). (Reading these reports, I [DM] fantasize a patient enjoying a solitary game of “rock, paper, scissors”—left versus right hand.)

Figure 7.13
Try this! People who have had split-brain surgery can simultaneously draw two different shapes.

When the “two minds” are at odds, the left hemisphere does mental gymnastics to rationalize reactions it does not understand. If a patient follows an order (“Walk”) sent to the right hemisphere, a strange thing happens. The unaware left hemisphere doesn’t know why the patient begins walking. If asked, the patient doesn’t reply, “I don’t know.” Instead, the left hemisphere improvises—“I’m going into the house to get a Coke.” Gazzaniga (1988), who considers these patients “the most fascinating people on earth,” concluded that the conscious left hemisphere is an “interpreter” that instantly constructs explanations. The brain, he concludes, often runs on autopilot; it acts first and then explains itself.

Page 85

HOW WOULD YOU KNOW?Have you ever been asked if you are “left-brained” or “right-brained?” Consider this popular misconception with LaunchPad’s How Would You Know If People Can be “Left-Brained” or “Right-Brained”?

RETRIEVAL PRACTICE

  • (1) If we flash a red light to the right hemisphere of a person with a split brain, and flash a green light to the left hemisphere, will each observe its own color? (2) Will the person be aware that the colors differ? (3) What will the person verbally report seeing?

1. yes, 2. no, 3. green

Right–Left Differences in the Intact Brain

So, what about the 99.99+ percent of us with undivided brains? Does each of our hemispheres also perform distinct functions? Several different types of studies indicate they do. When a person performs a perceptual task, for example, brain waves, bloodflow, and glucose consumption reveal increased activity in the right hemisphere. When the person speaks or calculates, activity usually increases in the left hemisphere.

A dramatic demonstration of hemispheric specialization happens before some types of brain surgery. To locate the patient’s language centers, the surgeon injects a sedative into the neck artery feeding blood to the left hemisphere, which usually controls speech. Before the injection, the patient is lying down, arms in the air, chatting with the doctor. Can you predict what probably happens when the drug puts the left hemisphere to sleep? Within seconds, the person’s right arm falls limp. If the left hemisphere is controlling language, the patient will be speechless until the drug wears off. If the drug is injected into the artery to the right hemisphere, the left arm will fall limp, but the person will still be able to speak.

To the brain, language is language, whether spoken or signed. Just as hearing people usually use the left hemisphere to process spoken language, deaf people use the left hemisphere to process sign language (Corina et al., 1992; Hickok et al., 2001). Thus, a left hemisphere stroke disrupts a deaf person’s signing, much as it would disrupt a hearing person’s speaking (Corina, 1998).

Although the left hemisphere is adept at making quick, literal interpretations of language, the right hemisphere

Page 86

Simply looking at the two hemispheres, so alike to the naked eye, who would suppose they contribute uniquely to the harmony of the whole? Yet a variety of observations—of people with split brains, of people with normal brains, and even of other species’ brains—converge beautifully, leaving little doubt that we have unified brains with specialized parts (Hopkins & Cantalupo 2008; MacNeilage et al., 2009; and see Thinking Critically About: Handedness).

For a helpful animated review of this research, see LaunchPad’s PsychSim 6: Hemispheric Specialization.

THINKING  CRITICALLY  ABOUT

THINKING CRITICALLY ABOUT: Handedness

7-4 What does research tell us about being left-handed? Is it advantageous to be right-handed?

Nearly 90 percent of us are primarily right-handed (Leask & Beaton, 2007; Medland et al., 2004; Peters et al., 2006). Most people also kick with their right foot and look through a microscope with their right eye. Some 10 percent of us (somewhat more among males, somewhat less among females) are left-handed. (A few people write with their right hand and throw a ball with their left, or vice versa.) Almost all right-handers (96 percent) process speech primarily in the left hemisphere, which tends to be the slightly larger hemisphere (Bishop, 2013). Left-handers are more diverse. Seven in ten process speech in the left hemisphere, as right-handers do. The rest either process language in the right hemisphere or use both hemispheres.

Is Handedness Inherited?

Judging from prehistoric human cave drawings, tools, and hand and arm bones, this veer to the right occurred long ago (Corballis, 1989; MacNeilage et al., 2009). Right-handedness prevails in all human cultures, and even in chimpanzees (Hopkins, 2013). Moreover, it appears prior to culture’s impact: More than 9 in 10 fetuses suck the right hand’s thumb (Hepper et al., 1990, 2004). Twin studies indicate only a small genetic influence on individual handedness (Vuoksimaa et al., 2009). But the universal prevalence of right-handers in humans and other primates suggests that either genes or some prenatal factors influence handedness.

So, Is It All Right to Be Left-Handed?

Judging by our everyday conversation, left-handedness is not all right. To be “coming out of left field” is hardly better than to be “gauche” (derived from the French word for “left”). On the other hand, right-handedness is “right on,” which any “righteous,” “right-hand man” “in his right mind” usually is.

Left-handers are more numerous than usual among those with reading disabilities, allergies, and migraine headaches (Geschwind & Behan, 1984). But in Iran, where students report which hand they write with when taking the university entrance exam, lefties have outperformed righties in all subjects (Noroozian et al., 2003). Left-handedness is also more common among musicians, mathematicians, professional baseball and cricket players, architects, and artists, including such luminaries as Michelangelo, Leonardo da Vinci, and Picasso.1 Although left-handers must tolerate elbow jostling at the dinner table, right-handed desks, and awkward scissors, the pros and cons of being a lefty seem roughly equal.

The rarest of baseball players: an ambidextrous pitcher Using a glove with two thumbs, Creighton University pitcher Pat Venditte, shown here in a 2008 game, pitched to right-handed batters with his right hand, then switched to face left-handed batters with his left hand. After one switch-hitter switched sides of the plate, Venditte switched pitching arms, which triggered the batter to switch again, and so on. The umpires ultimately ended the comedy routine by applying a little-known rule: A pitcher must declare which arm he will use before throwing his first pitch to a batter (Schwarz, 2007).


RETRIEVAL PRACTICE

  • Almost all right-handers process speech in the __________ hemisphere; most left-handers process speech in the _____________ hemisphere.

left; left—the other 30 percent vary, processing speech in the right hemisphere or in both hemispheres

***

Page 87

We have glimpsed an overriding principle: Everything psychological is simultaneously biological. We have focused on how our thoughts, feelings, and actions arise from our specialized yet integrated brain. Elsewhere in this text, we further explore the significance of the biological revolution in psychology.

From nineteenth-century phrenology to today’s neuroscience, we have come a long way. Yet what is unknown still dwarfs what is known. We can describe the brain. We can learn the functions of its parts. We can study how the parts communicate. But how do we get mind out of meat? How does the electrochemical whir in a hunk of tissue the size of a head of lettuce give rise to elation, a creative idea, or that memory of Grandmother?

Much as gas and air can give rise to something different—fire—so also, believed Roger Sperry, does the complex human brain give rise to something different: consciousness. The mind, he argued, emerges from the brain’s dance of ions, yet is not reducible to it. As neuroscientist Donald MacKay (1978) observed, “[My brain activity] reflects what I am thinking, as [computer] activity reflects the equation it is solving.” The mind and brain activities are yoked (no brain, no mind), he noted, but are complementary and conceptually distinct.

“All psychological phenomena are caused by the brain, but many are better understood at the level of the mind.”

Tweet from psychologist Steven Pinker, June 10, 2013

Cells cannot be fully explained by the actions of atoms, nor minds by the activity of cells. Psychology is rooted in biology, which is rooted in chemistry, which is rooted in physics. Yet psychology is more than applied physics. As Jerome Kagan (1998) reminded us, the meaning of the Gettysburg Address is not reducible to neural activity. Sexual love is more than blood flooding to the genitals. Morality and responsibility become possible when we understand the mind as a “holistic system,” said Sperry (1992) (FIGURE 7.14). We are not mere jabbering robots. Brains make thoughts. And thoughts change brains.

Figure 7.14
Mind and brain as holistic system In Roger Sperry’s view, the brain creates and controls the emergent mind, which in turn influences the brain. (Think vividly about biting into a lemon and you may salivate.)

“‘Was the cause psychological or biological?’ is the wrong question when assigning responsibility for an action. All psychological states are also biological ones.”

Psychologists John Monterosso and Barry Schwartz, “Did Your Brain Make You Do It?” 2012

The mind seeking to understand the brain—that is indeed among the ultimate scientific challenges. And so it will always be. To paraphrase cosmologist John Barrow, a brain simple enough to be understood is too simple to produce a mind able to understand it.

Page 88