Section 4.2
A geneticist discovers a male mouse with greatly enlarged testes in his laboratory colony. He suspects that this trait results from a new mutation that is either Y linked or autosomal dominant. How could he determine whether the trait is autosomal dominant or Y linked?
Section 4.3
Female humans who are heterozygous for X-linked recessive genes sometimes exhibit mild expression of the trait. However, such mild expression of X-linked traits in females who are heterozygous for X-linked alleles is not seen in Drosophila. What might cause this difference in the expression of X-linked genes in female humans and female Drosophila? (Hint: In Drosophila, dosage compensation is accomplished by doubling the activity of genes on the X chromosome of males.)
Identical twins (also called monozygotic twins) are derived from a single egg fertilized by a single sperm, creating a zygote that later divides into two (see Chapter 6). Because identical twins originate from a single zygote, they are genetically identical.
Caroline Loat and her colleagues examined nine measures of social, behavioral, and cognitive ability in 1000 pairs of identical male twins and 1000 pairs of identical female twins (C. S. Loat, et al. 2004. Twin Research 7:54–61). They found that, for three of the measures (prosocial behavior, peer problems, and verbal ability), the two male twins of a pair tended to be more alike in their scores than were two female twins of a pair. Propose a possible explanation for this observation. What might this observation indicate about the location of genes that influence prosocial behavior, peer problems, and verbal ability?
Occasionally, a mouse X chromosome is broken into two pieces and each piece becomes attached to a different autosomal chromosome. In this event, the genes on only one of the two pieces undergo X inactivation. What does this observation indicate about the mechanism of X-chromosome inactivation?
Go to your to find additional learning resources and the Suggested Readings for this chapter.