Find the critical points of f(x) = $m·sin(x) +$m·cos(x) and determine the extreme values on .
A number c in the domain of f is called a critical point if f'(c) =1Wh3cvJ2xF4= or where f'(c)risoekzpYAAgRXECVAcsXWXnXFT9zJ4gDoyL7g==.
The extreme values (absolute maximum and absolute minimum) of a continuous function on a closed interval occur either at a veUJQTOZK4x9ROLR9ZowuS+REowc07GT0ub4zJSXu3Q9LVxQoTWeVA== of the function or at the PYUF4jajY92ZPh6isbc26od3QKQqgM0X of the closed interval.
Thus, we need to find the critical points of f(x) = $m·sin(x) +$m·cos(x) in and then compare the function values at these critical points with the function values at the endpoints of to find the extreme values.
Find f'(x).
f(x) = $m·sin(x) +$m·cos(x)
f'(x) = RzFwHiTkGvzaVYltE1Vrml6jTAx0cim8bOmIi2p0RXVaf12GO3D9Ih2tPHYdOtDWW3dGrTznjaldZLxXQoKvBSFmMQE4vyH7hWWm2CyMBxfbugZAto/kz8WRxLXy8cHanqjylW8gWuXiOrHP8ANuLA==
f'(x) is TMCjkDkjHOoWmmLY0MxjDvhFWoaLycK4Eqqij+SwweBTVXh9y0tudN3mhxfzq1uc2Qyn5TQPNyl4tHP4GOxQTw==.
Solve f'(x) = 0 for to find any critical points, c.
f'(x) = 0
$m·sin(x) + $m·cos(x) = 0
sin(x) = cos(x)
tan(x) = 0VV1JcqyBrI=
Thus, the critical point on that satisifes this equation is
c = KP7xRuJeu2MMVdBrp+D41A==.
Compare the values of f(x) = $m·sin(x) + $m·cos(x) at the critical point x = and the endpoints of . The greatest value is the absolute maximum and the smallest value is the absolute minimum of f(x) on .
nzZK80z5Ma1gnSaj.
xf1an8qan6o=.
xf1an8qan6o=.
(Round your answers to two decimal places.)
The minimum value of f is xf1an8qan6o=.
The maximum value of f is nzZK80z5Ma1gnSaj.
(Round your answers to two decimal places.)