Evaluate the integral using the FTC 1.
The Fundamental Theorem of Calculus (Part 1) states that if f(x) is a continuous function on an interval [a, b], then where F(x) is an antiderivative of f(x).
The given function, is defined for all x on the interval and is continuous.
Find an antiderivative F(x) of f(x).
muJibw+y6BurT6l+NA5ZjSDceNNAmUdOimmHKDnMA92AtUSFiBXwXsrZQpSl6kLUVUKsspiXLINW+sjan/OAVq9Zomsd1k0hU6N5orC8XbKBqtWGn093gCWtu2lAPoPSGffT0p+Hb5oQ1yedwjonYIK6XlvEL+8Hcqt3hIerw4b4pbDbpF186NTfpF/PE4AEEIgeUEELDi61av0OBHHkyW8iv7zfBW6aZijAYQ3QI9wx+W0uaTXSK87xhm31zgn7C5cwvdxeA8BuWdnUTvlsDPDFqqANt7n823/H17Z9mjNurYwaOXG1eE+AyhjzesGM9GwSBcIY8gcwP3FrUxsAT1nxLI8wkgKm6JyWDP4TJ6vYWagavQWlZMNzxM8IwRcyIvpg5PstOXBJIcH1ITzmbgjBVqFzl5vZLq+p3UNppszQPQ3WEDjYQFCgyAXaa2kYBde+eMCnjbL9CWelLU95bAA5iTP6+KjK5oPyQCLkpX2S4rIcBt+wbhvF8aiMxEhz9Gv8JAwvU4J6BQ/is+SLF/F9KNIMD0DZ2zaEnftwu9N1IqQH2mywGWl360g/+DI4ffr3VFELyustB5wO5cGN+Pxcya0VVldZI9GZLiS6mQR+0PkINloIFjuYqdcWPgQQYZDPw3jBBH2Ht8Y94spiRo0qdqHhdCPr4rMeuLudORdBDPIii9W/eS1AIwQSKWXGT3S1ETfxRx0d1lRZ5AWR9lvWVwf3lBavmFoiA6W3b02GVWWxQeSbxC20Ba+AdYtC1VvF9LFOs8v8kdEOskX9iGsk+ctl+ZvG0schvP+gLmHklZcgLiJ53tRMmDvhKQmKII0/KgziC2oNuPYZrK5fybAHDOc+M/M0+umhUKC/PAKMpo641pdZVi7c250KbmZ3D6gqoGDaF0mk4zGD/+2AblqtOBkdjYD55tOtJzDmdZsKO9yXKoy3m8yQyjm5TOaPwJnwYtTqMn52nITSbfjVnvWifXAgc1J/n4Tpe520trSsYoVy/9tU4I58uZCbkDJ5pdf0ZWG1CaX6/Ftdj5ywmV4KkSlMfMwn/sy5Q3YjXIwVsH9IKUCyQ9wB3epOFKYC9sLQ9HB1KnsH7z37UAhHWPKv670JvHFaH2lpIk82TZ8=
Recall that the constant term, C, cancels out when evaluating a definite integral and is omitted in the calculations.
Evaluate the definite integral.
qjqZz1N+poo= .