Equal treatment for all

Probability samples are a big idea, but sampling in practice has difficulties that just using random samples doesn’t solve. Randomized comparative experiments are also a big idea, but they don’t solve all the difficulties of experimenting. A sampler must know exactly what information she wants and must compose questions that extract that information from her sample. An experimenter must know exactly what treatments and responses he wants information about, and he must construct the apparatus needed to apply the treatments and measure the responses. This is what psychologists or medical researchers or engineers mean when they talk about “designing an experiment.” We are concerned with the statistical side of designing experiments, ideas that apply to experiments in psychology, medicine, engineering, and other areas as well. Even at this general level, you should understand the practical problems that can prevent an experiment from producing useful data.

118

The logic of a randomized comparative experiment assumes that all the subjects are treated alike except for the treatments that the experiment is designed to compare. Any other unequal treatment can cause bias. Treating subjects exactly alike is hard to do.

EXAMPLE 1 Rats and rabbits

Rats and rabbits that are specially bred to be uniform in their inherited characteristics are the subjects in many experiments. However, animals, like people, can be quite sensitive to how they are treated. Here are two amusing examples of how unequal treatment can create bias.

Does a new breakfast cereal provide good nutrition? To find out, compare the weight gains of young rats fed the new product and rats fed a standard diet. The rats are randomly assigned to diets and are housed in large racks of cages. It turns out that rats in upper cages grow a bit faster than rats in bottom cages. If the experimenters put rats fed the new product at the top and those fed the standard diet below, the experiment is biased in favor of the new product. Solution: assign the rats to cages at random.

Another study looked at the effects of human affection on the cholesterol level of rabbits. All the rabbit subjects ate the same diet. Some (chosen at random) were regularly removed from their cages to have their furry heads scratched by friendly people. The rabbits who received affection had lower cholesterol. So affection for some but not other rabbits could bias an experiment in which the rabbits’ cholesterol level is a response variable.